def wider_weighted_add(layer, n_add, weighted=True):
    if not weighted:
        return StubAdd()

    n_add += 0
    new_layer = StubAdd()
    new_layer.set_weights(layer.get_weights())
    return new_layer
Example #2
0
def get_add_skip_model():
    graph = Graph((5, 5, 3), False)
    output_node_id = 0

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.CONV_DROPOUT_RATE), output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.CONV_DROPOUT_RATE), output_node_id)

    temp_node_id = output_node_id

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.CONV_DROPOUT_RATE), output_node_id)

    temp_node_id = graph.add_layer(StubConv(3, 3, 1), temp_node_id)
    output_node_id = graph.add_layer(StubAdd(), [output_node_id, temp_node_id])

    temp_node_id = output_node_id

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.CONV_DROPOUT_RATE), output_node_id)

    temp_node_id = graph.add_layer(StubConv(3, 3, 1), temp_node_id)
    output_node_id = graph.add_layer(StubAdd(), [output_node_id, temp_node_id])

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id)
    output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.CONV_DROPOUT_RATE), output_node_id)

    output_node_id = graph.add_layer(StubFlatten(), output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubDense(graph.node_list[output_node_id].shape[0], 5),
                                     output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.DENSE_DROPOUT_RATE), output_node_id)

    output_node_id = graph.add_layer(StubReLU(), output_node_id)
    output_node_id = graph.add_layer(StubDense(5, 5), output_node_id)
    output_node_id = graph.add_layer(StubDropout(constant.DENSE_DROPOUT_RATE), output_node_id)
    graph.add_layer(StubSoftmax(), output_node_id)

    graph.produce_model().set_weight_to_graph()

    return graph
Example #3
0
    def to_add_skip_model(self, start_id, end_id):
        """Add a weighted add skip-connection from after start node to end node.

        Args:
            start_id: The convolutional layer ID, after which to start the skip-connection.
            end_id: The convolutional layer ID, after which to end the skip-connection.
        """
        self.operation_history.append(('to_add_skip_model', start_id, end_id))
        conv_block_input_id = self._conv_block_end_node(start_id)
        conv_block_input_id = self.adj_list[conv_block_input_id][0][0]

        block_last_layer_input_id = self._conv_block_end_node(end_id)

        # Add the pooling layer chain.
        layer_list = self._get_pooling_layers(conv_block_input_id, block_last_layer_input_id)
        skip_output_id = conv_block_input_id
        for index, layer_id in enumerate(layer_list):
            skip_output_id = self.add_layer(deepcopy(self.layer_list[layer_id]), skip_output_id)

        # Add the conv layer
        new_relu_layer = StubReLU()
        skip_output_id = self.add_layer(new_relu_layer, skip_output_id)
        new_conv_layer = StubConv(self.layer_list[start_id].filters, self.layer_list[end_id].filters, 1)
        skip_output_id = self.add_layer(new_conv_layer, skip_output_id)
        new_bn_layer = StubBatchNormalization(self.layer_list[end_id].filters)
        skip_output_id = self.add_layer(new_bn_layer, skip_output_id)

        # Add the add layer.
        block_last_layer_output_id = self.adj_list[block_last_layer_input_id][0][0]
        add_input_node_id = self._add_node(deepcopy(self.node_list[block_last_layer_output_id]))
        add_layer = StubAdd()

        self._redirect_edge(block_last_layer_input_id, block_last_layer_output_id, add_input_node_id)
        self._add_edge(add_layer, add_input_node_id, block_last_layer_output_id)
        self._add_edge(add_layer, skip_output_id, block_last_layer_output_id)
        add_layer.input = [self.node_list[add_input_node_id], self.node_list[skip_output_id]]
        add_layer.output = self.node_list[block_last_layer_output_id]
        self.node_list[block_last_layer_output_id].shape = add_layer.output_shape

        # Set weights to the additional conv layer.
        if self.weighted:
            filters_end = self.layer_list[end_id].filters
            filters_start = self.layer_list[start_id].filters
            filter_shape = (1,) * (len(self.layer_list[end_id].get_weights()[0].shape) - 2)
            weights = np.zeros((filters_end, filters_start) + filter_shape)
            bias = np.zeros(filters_end)
            new_conv_layer.set_weights((add_noise(weights, np.array([0, 1])), add_noise(bias, np.array([0, 1]))))

            n_filters = filters_end
            new_weights = [add_noise(np.ones(n_filters, dtype=np.float32), np.array([0, 1])),
                           add_noise(np.zeros(n_filters, dtype=np.float32), np.array([0, 1])),
                           add_noise(np.zeros(n_filters, dtype=np.float32), np.array([0, 1])),
                           add_noise(np.ones(n_filters, dtype=np.float32), np.array([0, 1]))]
            new_bn_layer.set_weights(new_weights)
Example #4
0
    def to_add_skip_model(self, start_id, end_id):
        """Add a weighted add skip connection from after start node to end node.

        Args:
            start_id: The convolutional layer ID, after which to start the skip-connection.
            end_id: The convolutional layer ID, after which to end the skip-connection.
        """
        self.operation_history.append(('to_add_skip_model', start_id, end_id))
        conv_block_input_id = self._conv_block_end_node(start_id)
        conv_block_input_id = self.adj_list[conv_block_input_id][0][0]

        dropout_input_id = self._conv_block_end_node(end_id)

        # Add the pooling layer chain.
        layer_list = self._get_pooling_layers(conv_block_input_id,
                                              dropout_input_id)
        skip_output_id = conv_block_input_id
        for index, layer_id in enumerate(layer_list):
            skip_output_id = self.add_layer(
                deepcopy(self.layer_list[layer_id]), skip_output_id)

        # Add the conv layer
        new_conv_layer = StubConv(self.layer_list[start_id].filters,
                                  self.layer_list[end_id].filters, 1)
        skip_output_id = self.add_layer(new_conv_layer, skip_output_id)

        # Add the add layer.
        dropout_output_id = self.adj_list[dropout_input_id][0][0]
        add_input_node_id = self._add_node(
            deepcopy(self.node_list[dropout_output_id]))
        add_layer = StubAdd()

        self._redirect_edge(dropout_input_id, dropout_output_id,
                            add_input_node_id)
        self._add_edge(add_layer, add_input_node_id, dropout_output_id)
        self._add_edge(add_layer, skip_output_id, dropout_output_id)
        add_layer.input = [
            self.node_list[add_input_node_id], self.node_list[skip_output_id]
        ]
        add_layer.output = self.node_list[dropout_output_id]
        self.node_list[dropout_output_id].shape = add_layer.output_shape

        # Set weights to the additional conv layer.
        if self.weighted:
            filters_end = self.layer_list[end_id].filters
            filters_start = self.layer_list[start_id].filters
            filter_shape = (1, ) * (
                len(self.layer_list[end_id].get_weights()[0].shape) - 2)
            weights = np.zeros((filters_end, filters_start) + filter_shape)
            bias = np.zeros(filters_end)
            new_conv_layer.set_weights((add_noise(weights, np.array([0, 1])),
                                        add_noise(bias, np.array([0, 1]))))