Example #1
0
    def get_metalearning_suggestions(self):
        # == METALEARNING suggestions
        # we start by evaluating the defaults on the full dataset again
        # and add the suggestions from metalearning behind it
        if self.num_metalearning_cfgs > 0:
            if self.metadata_directory is None:
                metalearning_directory = os.path.dirname(
                    autosklearn.metalearning.__file__)
                # There is no multilabel data in OpenML
                if self.task == MULTILABEL_CLASSIFICATION:
                    meta_task = BINARY_CLASSIFICATION
                else:
                    meta_task = self.task
                metadata_directory = os.path.join(
                    metalearning_directory, 'files',
                    '%s_%s_%s' % (self.metric, TASK_TYPES_TO_STRING[meta_task],
                                  'sparse' if self.datamanager.info['is_sparse']
                                  else 'dense'))
                self.metadata_directory = metadata_directory

            if os.path.exists(self.metadata_directory):

                self.logger.info('Metadata directory: %s',
                                 self.metadata_directory)
                meta_base = MetaBase(self.config_space, self.metadata_directory)

                try:
                    meta_base.remove_dataset(self.dataset_name)
                except:
                    pass

                metafeature_calculation_time_limit = int(
                    self.total_walltime_limit / 4)
                metafeature_calculation_start_time = time.time()
                meta_features = self._calculate_metafeatures_with_limits(
                    metafeature_calculation_time_limit)
                metafeature_calculation_end_time = time.time()
                metafeature_calculation_time_limit = \
                    metafeature_calculation_time_limit - (
                        metafeature_calculation_end_time -
                        metafeature_calculation_start_time)

                if metafeature_calculation_time_limit < 1:
                    self.logger.warning(
                        'Time limit for metafeature calculation less '
                        'than 1 seconds (%f). Skipping calculation '
                        'of metafeatures for encoded dataset.',
                        metafeature_calculation_time_limit)
                    meta_features_encoded = None
                else:
                    with warnings.catch_warnings():
                        warnings.showwarning = self._send_warnings_to_log
                        self.datamanager.perform1HotEncoding()
                    meta_features_encoded = \
                        self._calculate_metafeatures_encoded_with_limits(
                            metafeature_calculation_time_limit)

                # In case there is a problem calculating the encoded meta-features
                if meta_features is None:
                    if meta_features_encoded is not None:
                        meta_features = meta_features_encoded
                else:
                    if meta_features_encoded is not None:
                        meta_features.metafeature_values.update(
                            meta_features_encoded.metafeature_values)

                if meta_features is not None:
                    meta_base.add_dataset(self.dataset_name, meta_features)
                    # Do mean imputation of the meta-features - should be done specific
                    # for each prediction model!
                    all_metafeatures = meta_base.get_metafeatures(
                        features=list(meta_features.keys()))
                    all_metafeatures.fillna(all_metafeatures.mean(),
                                            inplace=True)

                    with warnings.catch_warnings():
                        warnings.showwarning = self._send_warnings_to_log
                        metalearning_configurations = self.collect_metalearning_suggestions(
                            meta_base)
                    if metalearning_configurations is None:
                        metalearning_configurations = []
                    self.reset_data_manager()

                    self.logger.info('%s', meta_features)

                    # Convert meta-features into a dictionary because the scenario
                    # expects a dictionary
                    meta_features_dict = {}
                    for dataset, series in all_metafeatures.iterrows():
                        meta_features_dict[dataset] = series.values
                    meta_features_list = []
                    for meta_feature_name in all_metafeatures.columns:
                        meta_features_list.append(
                            meta_features[meta_feature_name].value)
                    meta_features_list = np.array(meta_features_list).reshape(
                        (1, -1))
                    self.logger.info(list(meta_features_dict.keys()))

            else:
                meta_features = None
                self.logger.warning('Could not find meta-data directory %s' %
                                    metadata_directory)

        else:
            meta_features = None
        if meta_features is None:
            meta_features_list = []
            metalearning_configurations = []
        return metalearning_configurations
class MetaBaseTest(unittest.TestCase):
    _multiprocess_can_split_ = True

    def setUp(self):
        self.cwd = os.getcwd()
        data_dir = os.path.dirname(__file__)
        data_dir = os.path.join(data_dir, 'test_meta_base_data')
        os.chdir(data_dir)

        cs = autosklearn.pipeline.classification.SimpleClassificationPipeline()\
            .get_hyperparameter_search_space()

        self.base = MetaBase(cs, data_dir)

    def tearDown(self):
        os.chdir(self.cwd)

    def test_get_all_runs(self):
        runs = self.base.get_all_runs()
        self.assertIsInstance(runs, pd.DataFrame)
        # TODO update this ASAP
        self.assertEqual((134, 24), runs.shape)

    def test_get_runs(self):
        runs = self.base.get_runs('38_acc')
        # TODO update this ASAP
        self.assertEqual(24, len(runs))
        self.assertIsInstance(runs, pd.Series)

    def test_get_metafeatures_single_dataset(self):
        mf = self.base.get_metafeatures('38_acc')
        self.assertIsInstance(mf, pd.Series)
        self.assertEqual(mf.name, u'38_acc')
        self.assertEqual(mf.loc['NumberOfInstances'], 2527.0)

    def test_get_metafeatures_single_feature(self):
        mf = self.base.get_metafeatures(features='NumberOfInstances')
        self.assertIsInstance(mf, pd.Series)
        self.assertEqual(mf.shape, (140, ))

    def test_get_metafeatures_single_dataset_and_single_feature(self):
        mf = self.base.get_metafeatures('38_acc', features='NumberOfInstances')
        self.assertEqual(mf.shape, ())

    def test_get_metafeatures_multiple_datasets(self):
        mf = self.base.get_metafeatures(['38_acc', '24_acc'])
        self.assertIsInstance(mf, pd.DataFrame)
        self.assertEqual(mf.shape, (2, 46))

    def test_get_metafeatures_multiple_features(self):
        mf = self.base.get_metafeatures(features=['NumberOfInstances',
                                                  'NumberOfClasses'])
        self.assertIsInstance(mf, pd.DataFrame)
        self.assertEqual(mf.shape, (140, 2))

    def test_remove_dataset(self):
        name = "1000_acc"
        for key in self.base.algorithm_runs:
            self.assertIn(name, self.base.algorithm_runs[key].index)
        self.assertIn(name, self.base.metafeatures.index)
        metafeatures_shape = self.base.metafeatures.shape
        self.base.remove_dataset(name)
        for key in self.base.algorithm_runs:
            self.assertNotIn(name, self.base.algorithm_runs[key].index)
        self.assertNotIn(name, self.base.metafeatures.index)
        # Check that only one thing was removed
        self.assertEqual(self.base.metafeatures.shape,
                         (metafeatures_shape[0] - 1, metafeatures_shape[1]))
Example #3
0
    def run_smbo(self):

        self.watcher.start_task('SMBO')

        # == first things first: load the datamanager
        self.reset_data_manager()

        # == Initialize non-SMBO stuff
        # first create a scenario
        seed = self.seed
        self.config_space.seed(seed)
        num_params = len(self.config_space.get_hyperparameters())
        # allocate a run history
        num_run = self.start_num_run

        # Initialize some SMAC dependencies
        runhistory = RunHistory(aggregate_func=average_cost)
        # meta_runhistory = RunHistory(aggregate_func=average_cost)
        # meta_runs_dataset_indices = {}

        # == METALEARNING suggestions
        # we start by evaluating the defaults on the full dataset again
        # and add the suggestions from metalearning behind it

        if self.num_metalearning_cfgs > 0:
            if self.metadata_directory is None:
                metalearning_directory = os.path.dirname(
                    autosklearn.metalearning.__file__)
                # There is no multilabel data in OpenML
                if self.task == MULTILABEL_CLASSIFICATION:
                    meta_task = BINARY_CLASSIFICATION
                else:
                    meta_task = self.task
                metadata_directory = os.path.join(
                    metalearning_directory, 'files', '%s_%s_%s' %
                    (self.metric, TASK_TYPES_TO_STRING[meta_task], 'sparse'
                     if self.datamanager.info['is_sparse'] else 'dense'))
                self.metadata_directory = metadata_directory

            if os.path.exists(self.metadata_directory):

                self.logger.info('Metadata directory: %s',
                                 self.metadata_directory)
                meta_base = MetaBase(self.config_space,
                                     self.metadata_directory)

                try:
                    meta_base.remove_dataset(self.dataset_name)
                except:
                    pass

                metafeature_calculation_time_limit = int(
                    self.total_walltime_limit / 4)
                metafeature_calculation_start_time = time.time()
                meta_features = self._calculate_metafeatures_with_limits(
                    metafeature_calculation_time_limit)
                metafeature_calculation_end_time = time.time()
                metafeature_calculation_time_limit = \
                    metafeature_calculation_time_limit - (
                    metafeature_calculation_end_time -
                    metafeature_calculation_start_time)

                if metafeature_calculation_time_limit < 1:
                    self.logger.warning(
                        'Time limit for metafeature calculation less '
                        'than 1 seconds (%f). Skipping calculation '
                        'of metafeatures for encoded dataset.',
                        metafeature_calculation_time_limit)
                    meta_features_encoded = None
                else:
                    with warnings.catch_warnings():
                        warnings.showwarning = self._send_warnings_to_log
                        self.datamanager.perform1HotEncoding()
                    meta_features_encoded = \
                        self._calculate_metafeatures_encoded_with_limits(
                            metafeature_calculation_time_limit)

                # In case there is a problem calculating the encoded meta-features
                if meta_features is None:
                    if meta_features_encoded is not None:
                        meta_features = meta_features_encoded
                else:
                    if meta_features_encoded is not None:
                        meta_features.metafeature_values.update(
                            meta_features_encoded.metafeature_values)

                if meta_features is not None:
                    meta_base.add_dataset(self.dataset_name, meta_features)
                    # Do mean imputation of the meta-features - should be done specific
                    # for each prediction model!
                    all_metafeatures = meta_base.get_metafeatures(
                        features=list(meta_features.keys()))
                    all_metafeatures.fillna(all_metafeatures.mean(),
                                            inplace=True)

                    with warnings.catch_warnings():
                        warnings.showwarning = self._send_warnings_to_log
                        metalearning_configurations = self.collect_metalearning_suggestions(
                            meta_base)
                    if metalearning_configurations is None:
                        metalearning_configurations = []
                    self.reset_data_manager()

                    self.logger.info('%s', meta_features)

                    # Convert meta-features into a dictionary because the scenario
                    # expects a dictionary
                    meta_features_dict = {}
                    for dataset, series in all_metafeatures.iterrows():
                        meta_features_dict[dataset] = series.values
                    meta_features_list = []
                    for meta_feature_name in all_metafeatures.columns:
                        meta_features_list.append(
                            meta_features[meta_feature_name].value)
                    meta_features_list = np.array(meta_features_list).reshape(
                        (1, -1))
                    self.logger.info(list(meta_features_dict.keys()))

                    # meta_runs = meta_base.get_all_runs(METRIC_TO_STRING[self.metric])
                    # meta_runs_index = 0
                    # try:
                    #    meta_durations = meta_base.get_all_runs('runtime')
                    #    read_runtime_data = True
                    # except KeyError:
                    #    read_runtime_data = False
                    #    self.logger.critical('Cannot read runtime data.')
                    #    if self.acquisition_function == 'EIPS':
                    #        self.logger.critical('Reverting to acquisition function EI!')
                    #        self.acquisition_function = 'EI'

                    # for meta_dataset in meta_runs.index:
                    #     meta_dataset_start_index = meta_runs_index
                    #     for meta_configuration in meta_runs.columns:
                    #         if np.isfinite(meta_runs.loc[meta_dataset, meta_configuration]):
                    #             try:
                    #                 config = meta_base.get_configuration_from_algorithm_index(
                    #                     meta_configuration)
                    #                 cost = meta_runs.loc[meta_dataset, meta_configuration]
                    #                 if read_runtime_data:
                    #                     runtime = meta_durations.loc[meta_dataset,
                    #                                                  meta_configuration]
                    #                 else:
                    #                     runtime = 1
                    #                 # TODO read out other status types!
                    #                 meta_runhistory.add(config, cost, runtime,
                    #                                     StatusType.SUCCESS,
                    #                                     instance_id=meta_dataset)
                    #                 meta_runs_index += 1
                    #             except:
                    #                 # TODO maybe add warning
                    #                 pass
                    #
                    #     meta_runs_dataset_indices[meta_dataset] = (
                    #         meta_dataset_start_index, meta_runs_index)
            else:
                meta_features = None
                self.logger.warning('Could not find meta-data directory %s' %
                                    metadata_directory)

        else:
            meta_features = None

        if meta_features is None:
            if self.acquisition_function == 'EIPS':
                self.logger.critical('Reverting to acquisition function EI!')
                self.acquisition_function = 'EI'
            meta_features_list = []
            meta_features_dict = {}
            metalearning_configurations = []

        if self.resampling_strategy in [
                'partial-cv', 'partial-cv-iterative-fit'
        ]:
            num_folds = self.resampling_strategy_args['folds']
            instances = [[
                json.dumps({
                    'task_id': self.dataset_name,
                    'fold': fold_number
                })
            ] for fold_number in range(num_folds)]
        else:
            instances = [[json.dumps({'task_id': self.dataset_name})]]

        startup_time = self.watcher.wall_elapsed(self.dataset_name)
        total_walltime_limit = self.total_walltime_limit - startup_time - 5
        scenario_dict = {
            'cs': self.config_space,
            'cutoff-time': self.func_eval_time_limit,
            'memory-limit': self.memory_limit,
            'wallclock-limit': total_walltime_limit,
            'output-dir': self.backend.get_smac_output_directory(self.seed),
            'shared-model': self.shared_mode,
            'run-obj': 'quality',
            'deterministic': 'true',
            'instances': instances
        }

        if self.configuration_mode == 'RANDOM':
            scenario_dict['minR'] = len(
                instances) if instances is not None else 1
            scenario_dict['initial_incumbent'] = 'RANDOM'

        self.scenario = Scenario(scenario_dict)

        # TODO rebuild target algorithm to be it's own target algorithm
        # evaluator, which takes into account that a run can be killed prior
        # to the model being fully fitted; thus putting intermediate results
        # into a queue and querying them once the time is over
        exclude = dict()
        include = dict()
        if self.include_preprocessors is not None and \
                self.exclude_preprocessors is not None:
            raise ValueError('Cannot specify include_preprocessors and '
                             'exclude_preprocessors.')
        elif self.include_preprocessors is not None:
            include['preprocessor'] = self.include_preprocessors
        elif self.exclude_preprocessors is not None:
            exclude['preprocessor'] = self.exclude_preprocessors
        if self.include_estimators is not None and \
                self.exclude_preprocessors is not None:
            raise ValueError('Cannot specify include_estimators and '
                             'exclude_estimators.')
        elif self.include_estimators is not None:
            if self.task in CLASSIFICATION_TASKS:
                include['classifier'] = self.include_estimators
            elif self.task in REGRESSION_TASKS:
                include['regressor'] = self.include_estimators
            else:
                raise ValueError(self.task)
        elif self.exclude_estimators is not None:
            if self.task in CLASSIFICATION_TASKS:
                exclude['classifier'] = self.exclude_estimators
            elif self.task in REGRESSION_TASKS:
                exclude['regressor'] = self.exclude_estimators
            else:
                raise ValueError(self.task)

        ta = ExecuteTaFuncWithQueue(
            backend=self.backend,
            autosklearn_seed=seed,
            resampling_strategy=self.resampling_strategy,
            initial_num_run=num_run,
            logger=self.logger,
            include=include,
            exclude=exclude,
            metric=self.metric,
            memory_limit=self.memory_limit,
            disable_file_output=self.disable_file_output,
            **self.resampling_strategy_args)

        types, bounds = get_types(self.config_space,
                                  self.scenario.feature_array)

        # TODO extract generation of SMAC object into it's own function for
        # testing
        if self.acquisition_function == 'EI':
            model = RandomForestWithInstances(
                types=types,
                bounds=bounds,
                #instance_features=meta_features_list,
                seed=1,
                num_trees=10)
            rh2EPM = RunHistory2EPM4Cost(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=[
                                             StatusType.SUCCESS,
                                             StatusType.MEMOUT,
                                             StatusType.TIMEOUT
                                         ],
                                         impute_censored_data=False,
                                         impute_state=None)
            _smac_arguments = dict(scenario=self.scenario,
                                   model=model,
                                   rng=seed,
                                   runhistory2epm=rh2EPM,
                                   tae_runner=ta,
                                   runhistory=runhistory)
        elif self.acquisition_function == 'EIPS':
            rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=[
                                             StatusType.SUCCESS,
                                             StatusType.MEMOUT,
                                             StatusType.TIMEOUT
                                         ],
                                         impute_censored_data=False,
                                         impute_state=None)
            model = UncorrelatedMultiObjectiveRandomForestWithInstances(
                ['cost', 'runtime'],
                types=types,
                bounds=bounds,
                num_trees=10,
                instance_features=meta_features_list,
                seed=1)
            acquisition_function = EIPS(model)
            _smac_arguments = dict(scenario=self.scenario,
                                   model=model,
                                   rng=seed,
                                   tae_runner=ta,
                                   runhistory2epm=rh2EPM,
                                   runhistory=runhistory,
                                   acquisition_function=acquisition_function)
        else:
            raise ValueError('Unknown acquisition function value %s!' %
                             self.acquisition_function)

        if self.configuration_mode == 'SMAC':
            smac = SMAC(**_smac_arguments)
        elif self.configuration_mode in ['ROAR', 'RANDOM']:
            for not_in_roar in ['runhistory2epm', 'model']:
                if not_in_roar in _smac_arguments:
                    del _smac_arguments[not_in_roar]
            smac = ROAR(**_smac_arguments)
        else:
            raise ValueError(self.configuration_mode)

        # Build a runtime model
        # runtime_rf = RandomForestWithInstances(types,
        #                                        instance_features=meta_features_list,
        #                                        seed=1, num_trees=10)
        # runtime_rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
        #                                      scenario=self.scenario,
        #                                      success_states=None,
        #                                      impute_censored_data=False,
        #                                      impute_state=None)
        # X_runtime, y_runtime = runtime_rh2EPM.transform(meta_runhistory)
        # runtime_rf.train(X_runtime, y_runtime[:, 1].flatten())
        # X_meta, Y_meta = rh2EPM.transform(meta_runhistory)
        # # Transform Y_meta on a per-dataset base
        # for meta_dataset in meta_runs_dataset_indices:
        #     start_index, end_index = meta_runs_dataset_indices[meta_dataset]
        #     end_index += 1  # Python indexing
        #     Y_meta[start_index:end_index, 0]\
        #         [Y_meta[start_index:end_index, 0] >2.0] =  2.0
        #     dataset_minimum = np.min(Y_meta[start_index:end_index, 0])
        #     Y_meta[start_index:end_index, 0] = 1 - (
        #         (1. - Y_meta[start_index:end_index, 0]) /
        #         (1. - dataset_minimum))
        #     Y_meta[start_index:end_index, 0]\
        #           [Y_meta[start_index:end_index, 0] > 2] = 2

        smac.solver.stats.start_timing()
        # == first, evaluate all metelearning and default configurations
        smac.solver.incumbent = smac.solver.initial_design.run()

        for challenger in metalearning_configurations:

            smac.solver.incumbent, inc_perf = smac.solver.intensifier.intensify(
                challengers=[challenger],
                incumbent=smac.solver.incumbent,
                run_history=smac.solver.runhistory,
                aggregate_func=smac.solver.aggregate_func,
                time_bound=self.total_walltime_limit)

            if smac.solver.scenario.shared_model:
                pSMAC.write(run_history=smac.solver.runhistory,
                            output_directory=smac.solver.scenario.output_dir,
                            num_run=self.seed)

            if smac.solver.stats.is_budget_exhausted():
                break

        # == after metalearning run SMAC loop
        while True:

            if smac.solver.scenario.shared_model:
                pSMAC.read(run_history=smac.solver.runhistory,
                           output_dirs=glob.glob(
                               self.backend.get_smac_output_glob()),
                           configuration_space=self.config_space,
                           logger=self.logger)

            choose_next_start_time = time.time()
            try:
                challengers = self.choose_next(smac)
            except Exception as e:
                self.logger.error(e)
                self.logger.error("Error in getting next configurations "
                                  "with SMAC. Using random configuration!")
                next_config = self.config_space.sample_configuration()
                challengers = [next_config]
            time_for_choose_next = time.time() - choose_next_start_time
            self.logger.info('Used %g seconds to find next '
                             'configurations' % (time_for_choose_next))

            time_for_choose_next = max(time_for_choose_next, 1.0)
            smac.solver.incumbent, inc_perf = smac.solver.intensifier.intensify(
                challengers=challengers,
                incumbent=smac.solver.incumbent,
                run_history=smac.solver.runhistory,
                aggregate_func=smac.solver.aggregate_func,
                time_bound=time_for_choose_next)

            if smac.solver.scenario.shared_model:
                pSMAC.write(run_history=smac.solver.runhistory,
                            output_directory=smac.solver.scenario.output_dir,
                            num_run=self.seed)

            if smac.solver.stats.is_budget_exhausted():
                break

        self.runhistory = smac.solver.runhistory
        self.trajectory = smac.solver.intensifier.traj_logger.trajectory
        smac.runhistory = self.runhistory
        self.fANOVA_input = smac.get_X_y()

        return self.runhistory, self.trajectory, self.fANOVA_input