Example #1
0
File: ui.py Project: lianlb/autoxd
def testTradeResult_Boll():
    code = '002074'
    bars = stock.CreateFenshiPd(code, '2017-7-22', '2017-8-4')
    if len(bars) > 0:
        bars = bars.resample('1min').mean()
    else:
        return
    bars['c'] = bars['p']
    bars = bars.dropna()
    zhijin = pd.Series(index=bars.index)
    zhijin.loc[:] = 1000000
    zhijin[100] = 1010000
    zhijin[200] = 980000

    TradeResult_Boll(pl, bars, zhijin, None,
                     stock.GetCodeName(code).decode('utf8'))
Example #2
0
def test_strategy(codes, strategy_name, cbfn_setparams=None, mode=1, start_day='', end_day='',
                  datasource_mode=stock.DataSources.datafrom.livedata, datasource_fn=None):	
    """strategy_name: str 通过策略名称来构造策略
    cbfn_setparams: callback function 回调函数 fn(strategy) 用该函数来重新设置参数
    mode : enum/int tick=0/hisdat=1
    datasource_mode : 数据源引用地 stock.DataSource.data_mode
    datasource_fn:  函数, data_mode需要使用自定义
    """
    from autoxd import backtest_runner
    if mode == 0:
        mode = backtest_runner.BackTestPolicy.enum.tick_mode
    stock.DataSources.data_mode = datasource_mode
    stock.datasource_fn = datasource_fn
    for code in codes:
        print(code, stock.GetCodeName(code))
        p = backtest_runner.BackTestPolicy(mode)
        p.SetStockCodes([code])
        backtesting = Backtest()
        account = backtesting.createAccount(account_type=None, username=None, pwd=None)
        #p.Regist(Strategy_basesign(backtesting, is_backtesting=True))
        strategy = strategy_name(backtesting, is_backtesting=True, mode=mode)
        #设置策略参数
        if cbfn_setparams is not None:
            cbfn_setparams(strategy)
        else:
            strategy.setParams()
        print(strategy.getParams())
        p.Regist(strategy)
        #p.Regist(Strategy_Trade(backtesting, is_backtesting=True))
        cur_day = agl.CurDay() 
        if end_day == '':
            end_day = cur_day
        #if start_day == '':
            ##再次修正为已有数据的20天
            #start_day = help.MyDate.s_Dec(end_day, -day_num)
        d1,d2 = p.initData(start_day, end_day)
        
        if d1 != d2:        
            print(d1, d2)
            p.Run(d1, d2)    
        else:
            print('没有数据')
Example #3
0
    def Run(self):
        """
        """
        #self._log('Strategy_Boll_Pre')

        #以下为交易测试
        code = self.data.get_code()  #当前策略处理的股票
        self.code = code
        if not self.is_backtesting and not self.AllowCode(code):
            return

        df_hisdat = self.data.get_hisdat(code)  #日k线
        df_five_hisdat = self.data.get_hisdat(code, dtype='5min')  #5分钟k线
        df_fenshi = self.data.get_fenshi(code)  #日分时
        if len(df_fenshi) == 0:
            self.data.log(code + u"未取到分时数据")
            return
        account = self._getAccount()  #获取交易账户
        price = float(df_fenshi.tail(1)['p'])  #当前股价
        closes = df_hisdat['c']
        yestoday_close = closes[-2]  #昨日收盘价
        zhangfu = stock.ZhangFu(price, yestoday_close)
        self._log(
            'price=%.2f %s %s' %
            (price, str(df_fenshi.index[-1]), str(df_five_hisdat.iloc[-1])))
        account_mgr = ac.AccountMgr(account, price, code)
        trade_num = ac.ShouShu(account_mgr.init_money() *
                               self.trade_num_use_money_percent / price)
        trade_num = max(100, trade_num)

        # 信号计算
        four = stock.FOUR(closes)
        four = four[-1]
        upper, middle, lower = stock.TDX_BOLL(df_five_hisdat['c'])
        highs, lows, closes = df_five_hisdat['h'], df_five_hisdat[
            'l'], df_five_hisdat['c']
        adx = stock.TDX_ADX(highs, lows, closes)
        self._log('boll : %.2f,%.2f,%.2f' % (upper[-1], middle[-1], lower[-1]))
        boll_w = abs(upper[-1] - lower[-1]) / middle[-1] * 100
        #50个周期内最高值
        is_high = abs(price - max(df_five_hisdat[-1000:]['h'])) / price < 0.005

        boll_poss = [
            upper[-1],
            (upper[-1] - middle[-1]) / 2 + middle[-1],
            middle[-1],
            (middle[-1] - lower[-1]) / 2 + lower[-1],
            lower[-1],
        ]
        self._log('boll_poss: %.2f, %.2f boll_w=%.2f adx=%.2f' %
                  (boll_poss[0], boll_poss[1], boll_w, adx[-1]))

        #上一个成交的价位
        pre_price = account_mgr.last_chengjiao_price()
        pre_pre_price = account_mgr.last_chengjiao_price(index=-2)
        sell_count = account_mgr.queryTradeCount(1)
        buy_count = account_mgr.queryTradeCount(0)
        #买入均价

        adx = adx[-1]
        boll_up_ratio = 0.02
        #信号判断
        num = 0
        if so.assemble(
                price > boll_poss[1],
                price > pre_price * (1 + self.trade_ratio),
                #price > boll_poss[2],
                #price > self.max_buy_price*(1+self.trade_ratio),
                #boll_w > 3.5,
                #adx > 60,
                #sell_count < 2,
                #pr.horizontal(df_five_hisdat),
                0,
        ):
            num = -trade_num
            self.trade_status = self.enum.boll_up_mid
            #if self.order(1, code, price, num):
            #self._log(agl.utf8_to_ascii('一档卖出%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price > boll_poss[0],
                price > pre_price * (1 + self.trade_ratio),
                #price > self.max_buy_price*(1+self.trade_ratio),
                #boll_w > 3,
                adx > 60,
                is_high,
                #four > self.trade_four[1],
                #sell_count < 2,
                #self.trade_status == self.enum.nothing,
                #0,
        ):
            num = -trade_num * 3
            self.trade_status = self.enum.boll_up
            #if self.order(1, code, price, num):
            #self._log(agl.utf8_to_ascii('二档卖出%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price < boll_poss[-2] * (1 + boll_up_ratio),
                price < pre_price * (1 - self.trade_ratio),
                #price < boll_poss[2],
                #price < self.min_sell_price*(1-0.03),
                #boll_w > 3.5,
                #adx>60,
                #buy_count < 2,
                #pr.horizontal(df_five_hisdat),
                0,
        ):
            num = trade_num
            self.trade_status = self.enum.boll_down_mid
            #if boll_w > 6:
            #num *= self.trade_num_ratio
            #if self.order(0, code, price, num):
            #self._log(agl.utf8_to_ascii('一档买入%s, %.2f, %d'%(code, price, num)))
        if so.assemble(
                price < boll_poss[-1],
                price < pre_price * (1 - self.trade_ratio),
                #price < self.min_sell_price*(1-0.03),
                #boll_w > 3,
                #buy_count < 2,
                #self.trade_status == self.enum.nothing,
                #adx>70,
                #four < self.trade_four[0],
                #0,
        ):
            num = trade_num * 3
            #num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.boll_down
            #if self.order(0, code, price, num):
            #self._log(agl.utf8_to_ascii('二档买入%s, %.2f, %d'%(code, price, num)))

        #成本区间
        if so.assemble(
                price < pre_price * (1 - 0.05),
                four < -0.1,
                self.trade_status == self.enum.boll_up,
                0,
        ):
            num = trade_num * self.trade_num_ratio
            self.trade_status = self.enum.nothing
        if so.assemble(
                price > pre_price * (1 + 0.05),
                four > 0.1,
                self.trade_status == self.enum.boll_down,
                0,
        ):
            num = -trade_num * self.trade_num_ratio
            self.trade_status = self.enum.nothing

        #zz顶抛出后回补
        if so.assemble(
                price < pre_price * (1 - 0.02),
                #sell_count >= 2,
                self.trade_status == self.enum.zz_up,
                0,
        ):
            #上次zz卖出的数量
            num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.zz_hui_bu
        if so.assemble(
                price > pre_price * (1 + 0.02),
                #sell_count >= 2,
                self.trade_status == self.enum.zz_down,
                0,
        ):
            #上次zz卖出的数量
            num = account_mgr.last_chengjiao_num()
            self.trade_status = self.enum.zz_hui_bu

        #计算分时zz
        zz_sign = 0
        closes = df_five_hisdat['c'][-200:].values
        zz = stock.ZigZag(closes)
        if len(zz) > 2:
            zz_result = stock.analyzeZZ(zz)
            zz_line_ratio = zz_result[1] / zz_result[0]  #线段比率
            #扑捉大涨回头的信号
            if abs(zz_result[0]) > 0.05 and abs(zz_line_ratio) > 0.05 and abs(
                    zz_line_ratio) < 0.2 and abs(zz_result[0]) > 0.04:
                zz_sign = agl.where(zz_result[1] > 0, 1, -1)

        if num != 0:
            bSell = agl.where(num > 0, 0, 1)
            num = abs(num)
            #if bSell:
            #num = self._compensate(num, bSell, code)
            #基本上每天的振幅都在1个点以上
            if abs(stock.ZhangFu(price, yestoday_close)) > 0.01:
                self.order(bSell, code, price, num)

        zz_pre_price = myredis.createRedisVal('policy_basesign_zz_pre_price',
                                              price)
        if so.assemble(
                zz_sign != 0,
                0,
        ):
            #print self.price, getZZPrePrice(self.price),abs(self.price-getZZPrePrice(self.price))/self.price
            num = trade_num * 12
            bSell = agl.where(zz_sign > 0, 0, 1)
            num = self._compensate(num, bSell, code)
            bCanOrder = False
            if so.assemble(
                    bSell,
                    price > zz_pre_price.get() * (1 + 0.03),
                    #price > pre_price*(1+self.trade_ratio),
            ):
                bCanOrder = True
                self.trade_status = self.enum.zz_up
            if so.assemble(
                (not bSell),
                    price < zz_pre_price.get() * (1 - 0.03),
                    #price < pre_price*(1-self.trade_ratio)
            ):
                bCanOrder = True
                self.trade_status = self.enum.zz_down
            if bCanOrder:
                self._getAccount().Order(bSell, code, price, num)
                zz_pre_price.set(price)

        #信号发生时语音播报, 并通知界面回显
        if not self.is_backtesting and (price > boll_poss[1]
                                        or price < boll_poss[-2]):
            codename = stock.GetCodeName(code)
            s = '%s, %.2f' % (codename, price)
            self.data.show(codename)  #通知界面显示
            self.data.speak2(s)  #语音播报

        #tick report
        if self.is_backtesting and self.is_tick_report:
            self._getAccount().TickReport(df_five_hisdat, 'win')
        return
Example #4
0
    def _Report(self, policy, start_day, end_day, last_close):
        policy._getAccount().Report(end_day, last_close, True)
        #绘制图形
        if hasattr(policy, 'Report'):
            policy.Report()
        #end_day = help.MyDate.s_Dec(end_day, 1)
        #bars = stock.CreateFenshiPd(self.code, start_day, end_day)
        if self.mode == 0:
            bars = self.dict_fenshi[self.codes[0]]
            if len(bars) == 0:
                return
            bars = bars.resample('1min').mean()
            bars['c'] = bars['p']
        else:
            #日线
            bars = self.panel_hisdat[self.codes[0]]
            if self.mode & self.enum.hisdat_five_mode == self.enum.hisdat_five_mode:
                bars = self.panel_fiveminHisdat[self.codes[0]]
        bars['positions'] = 0
        bars = bars.dropna()
        df = policy._getAccount().ChengJiao()
        df_zhijing = policy._getAccount().ZhiJing()
        init_money = df_zhijing.iloc[0]['资产']
        df_zhijing = df_zhijing[bars.index[0]:]
        df_changwei = policy._getAccount().ChengJiao()
        cols = ['买卖标志', '委托数量']
        df_flag = df_changwei[cols[0]].map(lambda x: x == '证券卖出' and -1 or 1)
        df_changwei[cols[1]] *= df_flag
        changwei = df_changwei[cols[1]].cumsum()
        if self.mode == self.enum.hisdat_mode:
            df.index = df.index.map(lambda x: agl.datetime_to_date(x))
        #bars.is_copy = False
        for i in range(len(df)):
            index = df.index[i]
            bSell = bool(df.iloc[i]['买卖标志'] == '证券卖出')
            if index in bars.index:
                bars.at[index, 'positions'] = agl.where(bSell, -1, 1)
        #同步资金到bar
        #df_zhijing.is_copy = False
        df_zhijing = copy.deepcopy(df_zhijing)  # 为了避免赋值警告
        df_zhijing['changwei'] = changwei
        if self.mode == self.enum.hisdat_mode:
            df_zhijing.index = df_zhijing.index.map(
                lambda x: agl.datetime_to_date(x))
        bars = bars.join(df_zhijing)
        bars = bars.fillna(method='pad')
        #同步价格的动态总资产
        bars['资产'] = bars['可用'] + bars['changwei'] * bars['c']
        zhican = (bars['资产'] - init_money) / init_money * 100
        zhican = zhican.fillna(0)
        if sys.version > '3':
            title = '%s %s' % (self.codes[0], stock.GetCodeName(self.codes[0]))
        else:
            title = '%s %s' % (self.codes[0], stock.GetCodeName(
                self.codes[0]).decode('utf8'))
        ui.TradeResult_Boll(agl.where(policy.pl, policy.pl, pl), bars,  \
                            stock.GuiYiHua(zhican),\
                            stock.GuiYiHua(bars['changwei']),
                            title=title)

        if policy.pl is not None:
            #if policy.pl.explicit:
            policy.pl.publish()