def __init__(self, episode_buffer, replay_buffer, action_space=3): self.lr = PARAM.LEARNING_RATE self.episode_buffer = episode_buffer self.replay_buffer = replay_buffer self.N = PARAM.N self.gamma = PARAM.gamma self.seq_len = PARAM.A2C_SEQUENCE_LENGTH self.aux_batch_size = PARAM.AUX_TASK_BATCH_SIZE self.vfr_weight = PARAM.VFR_LOSS_WEIGHT self.rp_weight = PARAM.RP_LOSS_WEIGHT self.pc_weight = PARAM.PC_LOSS_WEIGHT # A2C network self.A = AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=action_space, seq_len=self.seq_len) # GPU availability self.gpu = torch.cuda.is_available() if self.gpu: print("Using GPU") self.A = self.A.cuda() else: print("Using CPU") # Loss Function and Optimizer self.optimizer = optim.Adam(self.A.parameters(), lr=self.lr, weight_decay=1e-6) self.vfr_criterion = nn.MSELoss() # Value Function Replay loss self.rp_criterion = nn.CrossEntropyLoss() # Reward Prediction loss self.pc_criterion = nn.MSELoss() # Value Function Replay loss
def __init__(self, episode_buffer, replay_buffer, action_space=3): self.lr = PARAM.LEARNING_RATE self.episode_buffer = episode_buffer self.replay_buffer = replay_buffer self.N = PARAM.N self.gamma = PARAM.gamma self.seq_len = PARAM.A2C_SEQUENCE_LENGTH self.aux_batch_size = PARAM.AUX_TASK_BATCH_SIZE self.vfr_weight = PARAM.VFR_LOSS_WEIGHT self.rp_weight = PARAM.RP_LOSS_WEIGHT self.pc_weight = PARAM.PC_LOSS_WEIGHT self.ppo_epochs = 10 #PARAM.PPO_EPOCHS self.num_mini_batch = 12 #PARAM.PPO_NUM_MINI_BATCH self.clip_param = 0.2 #self.max_grad_norm = PARAM.MAX_GRAD_NORM #self.use_clipped_value_loss = PARAM.USE_CLIPPED_VALUE_LOSS # A2C network self.A = AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=action_space, seq_len=self.seq_len) # GPU availability self.gpu = torch.cuda.is_available() if self.gpu: print("Using GPU") self.A = self.A.cuda() else: print("Using CPU") # Loss Function and Optimizer self.optimizer = optim.Adam(self.A.parameters(), lr=self.lr, weight_decay=1e-6) self.vfr_criterion = nn.MSELoss() # Value Function Replay loss self.rp_criterion = nn.CrossEntropyLoss() # Reward Prediction loss self.pc_criterion = nn.MSELoss() # Value Function Replay loss
def __init__(self, ReplayBuffer, action_space=3, network=None): self.lr = PARAM.LEARNING_RATE self.N = PARAM.N self.gamma = PARAM.gamma self.seq_len = PARAM.A2C_SEQUENCE_LENGTH self.aux_batch_size = PARAM.AUX_TASK_BATCH_SIZE self.vfr_weight = PARAM.VFR_LOSS_WEIGHT self.rp_weight = PARAM.RP_LOSS_WEIGHT self.pc_weight = PARAM.PC_LOSS_WEIGHT self.gpu = torch.cuda.is_available() # A2C network if PARAM.ENSEMBLE < 1: self.A = AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=action_space, seq_len=self.seq_len) # GPU availability if self.gpu: print("Using GPU") self.A = self.A.cuda() else: print("Using CPU") self.replay_buffer = ReplayBuffer(PARAM.REPLAY_MEMORY_SIZE) # Loss Function and Optimizer self.optimizer = optim.Adam(self.A.parameters(), lr=self.lr, weight_decay=1e-6) else: self.Ensemble = Ensemble(PARAM.ENSEMBLE, action_space, self.seq_len, ReplayBuffer, network) self.source_context() self.vfr_criterion = nn.MSELoss() # Value Function Replay loss self.rp_criterion = nn.CrossEntropyLoss() # Reward Prediction loss self.pc_criterion = nn.MSELoss() # Value Function Replay loss
def main(): man = Manager() if cuda.is_available(): list_of_networks = man.list([ AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=3, seq_len=PARAM.A2C_SEQUENCE_LENGTH).cuda() for i in range(PARAM.ENSEMBLE) ]) else: list_of_networks = man.list([ AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=3, seq_len=PARAM.A2C_SEQUENCE_LENGTH) for i in range(PARAM.ENSEMBLE) ]) args = parse_arguments() p = Pool(PARAM.AGENTS) p.map(train, [list_of_networks] * PARAM.AGENTS, chunksize=1)
def __init__(self, size, action_space, seq_len, ReplayBuffer, network): self.list_of_networks = network if network is None: self.list_of_networks = [AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=3, seq_len=PARAM.A2C_SEQUENCE_LENGTH) for i in range(PARAM.ENSEMBLE)] self.gpu = torch.cuda.is_available() if self.gpu: print("Using GPU") self.list_of_networks = [network.cuda() for network in self.list_of_networks] else: print("Using CPU") self.list_of_optimizers = [optim.Adam(network.parameters(), lr=PARAM.LEARNING_RATE, weight_decay=1e-6) for network in self.list_of_networks] self.list_of_replay_buffers = [ReplayBuffer(PARAM.REPLAY_MEMORY_SIZE) for network in self.list_of_networks] self.list_of_action_repeats = PARAM.ACTION_REPEAT self.current=len(self.list_of_networks)-1 self.update_context() if PARAM.USE_ALTERNATE_SWITCHING_POLICY==True: self.analyze_rewards = self.analyze_rewards_1
class A2C(): def __init__(self, episode_buffer, replay_buffer, action_space=3): self.lr = PARAM.LEARNING_RATE self.episode_buffer = episode_buffer self.replay_buffer = replay_buffer self.N = PARAM.N self.gamma = PARAM.gamma self.seq_len = PARAM.A2C_SEQUENCE_LENGTH self.aux_batch_size = PARAM.AUX_TASK_BATCH_SIZE self.vfr_weight = PARAM.VFR_LOSS_WEIGHT self.rp_weight = PARAM.RP_LOSS_WEIGHT self.pc_weight = PARAM.PC_LOSS_WEIGHT # A2C network self.A = AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=action_space, seq_len=self.seq_len) # GPU availability self.gpu = torch.cuda.is_available() if self.gpu: print("Using GPU") self.A = self.A.cuda() else: print("Using CPU") # Loss Function and Optimizer self.optimizer = optim.Adam(self.A.parameters(), lr=self.lr, weight_decay=1e-6) self.vfr_criterion = nn.MSELoss() # Value Function Replay loss self.rp_criterion = nn.CrossEntropyLoss() # Reward Prediction loss self.pc_criterion = nn.MSELoss() # Value Function Replay loss def reduce_learning_rate(self): for pgroups in self.optimizer.param_groups: pgroups['lr'] = pgroups['lr'] / 10.0 def train(self, episode_len): self.optimizer.zero_grad() loss = self.compute_A2C_loss(episode_len) loss += self.vfr_weight * self.compute_vfr_loss() if self.replay_buffer.any_reward_instances(): loss += self.rp_weight * self.compute_rp_loss() loss += self.pc_weight * self.compute_pc_loss() loss.backward() torch.nn.utils.clip_grad_value_(self.A.parameters(), PARAM.GRAD_CLIP_VAL) self.optimizer.step() if math.isnan(loss.item()): print('Loss Eploded!') def compute_A2C_loss(self, episode_len): T = episode_len n = self.N for t in range(T - 1, -1, -1): val = self.episode_buffer[t][-1] if t + n >= T: Vend = 0 else: Vend = self.episode_buffer[t + n][-1] sum_ = 0.0 for k in range(n): if t + k < T: tk_reward = self.episode_buffer[t + k][2] sum_ += tk_reward * (self.gamma**k) rew = Vend * (self.gamma**n) + float(sum_) if t == T - 1: ploss = (rew - val) * torch.log( self.episode_buffer[t][4][self.episode_buffer[t][1]]) vloss = (rew - val)**2 else: ploss += (rew - val) * torch.log( self.episode_buffer[t][4][self.episode_buffer[t][1]]) vloss += (rew - val)**2 ploss = -1.0 * ploss / float(T) vloss = vloss / float(T) return ploss + vloss def compute_vfr_loss(self): """ Computes Value Function Replay Loss. """ idxs = self.replay_buffer.sample_idxs(self.aux_batch_size) vision, scent, state, reward = self.get_io_from_replay_buffer( idxs, batch_size=self.aux_batch_size, seq_len=self.seq_len) val, _ = self.A.forward(vision, scent, state) return self.vfr_criterion(val.view(-1, 1), reward) def compute_rp_loss(self): """ Computes Reward Prediction Loss. """ vision, ground_truth = self.get_io_from_skewed_replay_buffer( batch_size=self.aux_batch_size, seq_len=3) pred = self.A.predict_rewards(vision) return self.rp_criterion(pred, ground_truth) def compute_pc_loss(self): """ Computes Pixel Control Loss. """ idxs = self.replay_buffer.sample_idxs(self.aux_batch_size) vision, aux_rew, actions = self.get_pc_io_from_replay_buffer( idxs, batch_size=self.aux_batch_size, seq_len=1) pred = self.A.pixel_control(vision) for i in range(20): if i == 0: pc_loss = self.pc_criterion(aux_rew[i], pred[i, actions[i]]) else: pc_loss += self.pc_criterion(aux_rew[i], pred[i, actions[i]]) return pc_loss def get_output(self, index, batch_size=1, seq_len=1, no_grad=False): ''' Returns output from the A network. ''' vision, scent, state = self.get_input_tensor(index, batch_size, seq_len) if no_grad: with torch.no_grad(): val, softmax = self.A.forward(vision, scent, state) else: val, softmax = self.A.forward(vision, scent, state) action = np.random.choice(np.arange(3), 1, p=np.squeeze( softmax.clone().cpu().detach().numpy())) return val, softmax.view(3), action def get_input_tensor(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) scent = np.zeros((batch_size, seq_len, 3)) state = np.zeros((batch_size, seq_len, 4)) for k, idx in enumerate(idxs): for j in range(seq_len): if idx - j < 0: continue obs, action, rew, _, _, tong_count, _ = self.episode_buffer[idx - j] vision[k, j] = np.moveaxis(obs['vision'], -1, 0) scent[k, j] = obs['scent'] state[k, j] = np.array( [action, rew, int(obs['moved']), tong_count]) vision, scent, state = torch.from_numpy(vision).float( ), torch.from_numpy(scent).float(), torch.from_numpy(state).float() if self.gpu: vision, scent, state = vision.cuda(), scent.cuda(), state.cuda() return vision, scent, state def get_io_from_replay_buffer(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) scent = np.zeros((batch_size, seq_len, 3)) state = np.zeros((batch_size, seq_len, 4)) reward = np.zeros((batch_size, 1)) for k, idx in enumerate(idxs): for j in range(seq_len): obs, action, rew, _, _, tong_count = self.replay_buffer.get_single_sample( idx - j) vision[k, j] = np.moveaxis(obs['vision'], -1, 0) scent[k, j] = obs['scent'] state[k, j] = np.array( [action, rew, int(obs['moved']), tong_count]) if j == 0: reward[k] = rew vision, scent, state, reward = torch.from_numpy( vision).float(), torch.from_numpy(scent).float(), torch.from_numpy( state).float(), torch.from_numpy(reward).float() if self.gpu: vision, scent, state, reward = vision.cuda(), scent.cuda( ), state.cuda(), reward.cuda() return vision, scent, state, reward def get_io_from_skewed_replay_buffer(self, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision, reward_class = self.replay_buffer.skewed_samples( batch_size, seq_len) vision, reward_class = torch.from_numpy( vision).float(), torch.from_numpy(reward_class).long() if self.gpu: vision, reward_class = vision.cuda(), reward_class.cuda() return vision, reward_class def get_pc_io_from_replay_buffer(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) aux_rew = np.zeros((batch_size, 11, 11)) actions = [[]] * batch_size for k, idx in enumerate(idxs): for j in range(seq_len): obs, action, _, next_obs, _, _ = self.replay_buffer.get_single_sample( idx - j) vision[k, j] = np.moveaxis(obs['vision'], -1, 0) if j == 0: if next_obs['moved']: aux_rew[k] = np.mean(np.abs(obs['vision'] - next_obs['vision']), axis=2) actions[k] = action vision, aux_rew = torch.from_numpy(vision).float(), torch.from_numpy( aux_rew).float() if self.gpu: vision, aux_rew = vision.cuda(), aux_rew.cuda() return vision, aux_rew, actions def set_train(self): self.A.train() def set_eval(self): self.A.eval() def save_model_weights(self, suffix, path='./'): # Helper function to save your model / weights. state = { 'epoch': suffix, 'state_dict': self.A.state_dict(), 'optmizer': self.optimizer.state_dict(), } torch.save(state, path + str(suffix) + '.dat') def load_model(self, model_file): # Helper function to load an existing model. state = torch.load(model_file) self.A.load_state_dict(state['state_dict']) self.optimizer.load_state_dict(state['optimizer'])
class PPO(): def __init__(self, episode_buffer, replay_buffer, action_space=3): self.lr = PARAM.LEARNING_RATE self.episode_buffer = episode_buffer self.replay_buffer = replay_buffer self.N = PARAM.N self.gamma = PARAM.gamma self.seq_len = PARAM.A2C_SEQUENCE_LENGTH self.aux_batch_size = PARAM.AUX_TASK_BATCH_SIZE self.vfr_weight = PARAM.VFR_LOSS_WEIGHT self.rp_weight = PARAM.RP_LOSS_WEIGHT self.pc_weight = PARAM.PC_LOSS_WEIGHT self.ppo_epochs = 10 #PARAM.PPO_EPOCHS self.num_mini_batch = 12 #PARAM.PPO_NUM_MINI_BATCH self.clip_param = 0.2 #self.max_grad_norm = PARAM.MAX_GRAD_NORM #self.use_clipped_value_loss = PARAM.USE_CLIPPED_VALUE_LOSS # A2C network self.A = AuxNetwork(state_size=PARAM.STATE_SIZE, action_space=action_space, seq_len=self.seq_len) # GPU availability self.gpu = torch.cuda.is_available() if self.gpu: print("Using GPU") self.A = self.A.cuda() else: print("Using CPU") # Loss Function and Optimizer self.optimizer = optim.Adam(self.A.parameters(), lr=self.lr, weight_decay=1e-6) self.vfr_criterion = nn.MSELoss() # Value Function Replay loss self.rp_criterion = nn.CrossEntropyLoss() # Reward Prediction loss self.pc_criterion = nn.MSELoss() # Value Function Replay loss def reduce_learning_rate(self): for pgroups in self.optimizer.param_groups: pgroups['lr'] = pgroups['lr']/10.0 def train(self, episode_len): T = episode_len n = self.N advantages = [] rewards = [] for t in range(T-1, -1, -1): val = self.episode_buffer[t][-1] if t + n >= T: Vend = 0 else: Vend = self.episode_buffer[t+n][-1] sum_ = 0.0 for k in range(n): if t + k < T: tk_reward = self.episode_buffer[t+k][2] sum_ += tk_reward * (self.gamma**k) rew = Vend*(self.gamma**n) + float(sum_) rewards.append(rew) if t == T-1: advantages.append(rew-val) else: advantages.append(rew-val) advantages = list(reversed(advantages)) advantages = torch.tensor(advantages) advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) rewards = list(reversed(rewards)) rewards = torch.tensor(rewards) self.ppo_epochs = 10 #PARAM.PPO_EPOCHS #self.clip_param = PARAM.PPO_CLIP_PARAM self.num_mini_batch = 1 #PARAM.PPO_NUM_MINI_BATCH self.seq_len = 4 for e in range(self.ppo_epochs): random_indicies = np.random.randint(T, size=self.num_mini_batch) new_values = [] new_softmax = [] for index in random_indicies: val, softmax, action = self.get_output([index], self.num_mini_batch, self.seq_len) new_values.append(val) new_softmax.append(softmax) for k, index in enumerate(random_indicies): action_log_probs = torch.log(new_softmax[k]) old_action_log_probs = torch.log(self.episode_buffer[index][4]) advantage_target = advantages[index] ratio = torch.exp(action_log_probs - old_action_log_probs) surr1 = ratio * advantage_target surr2 = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) * advantage_target action_loss = -torch.min(surr1, surr2).mean() value_loss = 0.8 * F.mse_loss(rewards[index], new_values[k]) self.optimizer.zero_grad() loss = action_loss + value_loss loss += self.vfr_weight * self.compute_vfr_loss() if self.replay_buffer.any_reward_instances(): loss += self.rp_weight * self.compute_rp_loss() loss += self.pc_weight * self.compute_pc_loss() loss.backward(retain_graph=True) torch.nn.utils.clip_grad_value_(self.A.parameters(), PARAM.GRAD_CLIP_VAL) self.optimizer.step() def compute_vfr_loss(self): """ Computes Value Function Replay Loss. """ idxs = self.replay_buffer.sample_idxs(self.aux_batch_size) vision, scent, state, reward = self.get_io_from_replay_buffer(idxs, batch_size=self.aux_batch_size, seq_len=self.seq_len) val, _ = self.A.forward(vision, scent, state) return self.vfr_criterion(val.view(-1, 1), reward) def compute_rp_loss(self): """ Computes Reward Prediction Loss. """ vision, ground_truth = self.get_io_from_skewed_replay_buffer(batch_size=self.aux_batch_size, seq_len=3) pred = self.A.predict_rewards(vision) return self.rp_criterion(pred, ground_truth) def compute_pc_loss(self): """ Computes Pixel Control Loss. """ idxs = self.replay_buffer.sample_idxs(self.aux_batch_size) vision, aux_rew, actions = self.get_pc_io_from_replay_buffer(idxs, batch_size=self.aux_batch_size, seq_len=1) pred = self.A.pixel_control(vision) for i in range(20): if i == 0: pc_loss = self.pc_criterion(aux_rew[i], pred[i, actions[i]]) else: pc_loss += self.pc_criterion(aux_rew[i], pred[i, actions[i]]) return pc_loss def get_output(self, index, batch_size=1, seq_len=1, no_grad=False): ''' Returns output from the A network. ''' vision, scent, state = self.get_input_tensor(index, batch_size, seq_len) if no_grad: with torch.no_grad(): val, softmax = self.A.forward(vision, scent, state) else: val, softmax = self.A.forward(vision, scent, state) action = np.random.choice(np.arange(3), 1, p=np.squeeze(softmax.clone().cpu().detach().numpy())) return val, softmax.view(3), action def get_input_tensor(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) scent = np.zeros((batch_size, seq_len, 3)) state = np.zeros((batch_size, seq_len, 4)) for k, idx in enumerate(idxs): for j in range(seq_len): if idx - j < 0: continue obs, action, rew, _, _, tong_count, _ = self.episode_buffer[idx-j] vision[k, j] = np.moveaxis(obs['vision'], -1, 0) scent[k, j] = obs['scent'] state[k, j] = np.array([action, rew, int(obs['moved']), tong_count]) vision, scent, state = torch.from_numpy(vision).float(), torch.from_numpy(scent).float(), torch.from_numpy(state).float() if self.gpu: vision, scent, state = vision.cuda(), scent.cuda(), state.cuda() return vision, scent, state def get_io_from_replay_buffer(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) scent = np.zeros((batch_size, seq_len, 3)) state = np.zeros((batch_size, seq_len, 4)) reward = np.zeros((batch_size, 1)) for k, idx in enumerate(idxs): for j in range(seq_len): obs, action, rew, _, _, tong_count = self.replay_buffer.get_single_sample(idx-j) vision[k, j] = np.moveaxis(obs['vision'], -1, 0) scent[k, j] = obs['scent'] state[k, j] = np.array([action, rew, int(obs['moved']), tong_count]) if j == 0: reward[k] = rew vision, scent, state, reward = torch.from_numpy(vision).float(), torch.from_numpy(scent).float(), torch.from_numpy(state).float(), torch.from_numpy(reward).float() if self.gpu: vision, scent, state, reward = vision.cuda(), scent.cuda(), state.cuda(), reward.cuda() return vision, scent, state, reward def get_io_from_skewed_replay_buffer(self, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision, reward_class = self.replay_buffer.skewed_samples(batch_size, seq_len) vision, reward_class = torch.from_numpy(vision).float(), torch.from_numpy(reward_class).long() if self.gpu: vision, reward_class = vision.cuda(), reward_class.cuda() return vision, reward_class def get_pc_io_from_replay_buffer(self, idxs, batch_size=1, seq_len=1): ''' Returns an input tensor from the observation. ''' vision = np.zeros((batch_size, seq_len, 3, 11, 11)) aux_rew = np.zeros((batch_size, 11, 11)) actions = [[]]*batch_size for k, idx in enumerate(idxs): for j in range(seq_len): obs, action, _, next_obs, _, _ = self.replay_buffer.get_single_sample(idx-j) vision[k, j] = np.moveaxis(obs['vision'], -1, 0) if j == 0: if next_obs['moved']: aux_rew[k] = np.mean(np.abs(obs['vision'] - next_obs['vision']), axis=2) actions[k] = action vision, aux_rew = torch.from_numpy(vision).float(), torch.from_numpy(aux_rew).float() if self.gpu: vision, aux_rew = vision.cuda(), aux_rew.cuda() return vision, aux_rew, actions def set_train(self): self.A.train() def set_eval(self): self.A.eval() def save_model_weights(self, suffix, path='./'): # Helper function to save your model / weights. state = { 'epoch': suffix, 'state_dict': self.A.state_dict(), 'optmizer': self.optimizer.state_dict(), } torch.save(state, path + str(suffix) + '.dat') def load_model(self, model_file): # Helper function to load an existing model. state = torch.load(model_file) self.A.load_state_dict(state['state_dict']) self.optimizer.load_state_dict(state['optimizer'])