fin[0, :, :] = fpost[0, :, :]

    fin[1, 1:nxl,   :]     = fpost[1, 0:nxl-1,  :]
    fin[2,   :,   0:nyl-1] = fpost[2,   :,    1:nyl]
    fin[3, 0:nxl-1, :]     = fpost[3, 1:nxl,    :]
    fin[4,   :,   1:nyl]   = fpost[4,   :,    0:nyl-1]

    fin[5, 1:nxl,   0:nyl-1] = fpost[5, 0:nxl-1, 1:nyl]
    fin[6, 0:nxl-1, 0:nyl-1] = fpost[6, 1:nxl,   1:nyl]
    fin[7, 0:nxl-1, 1:nyl]   = fpost[7, 1:nxl,   0:nyl-1]
    fin[8, 1:nxl,   1:nyl]   = fpost[8, 0:nxl-1, 0:nyl-1]


    # Left wall: compute density from known populations
    u[:, :, 0] = vel[:, :, 0]
    rho[:, 0] = sumPopulations(fin[iCentV, 0, :])+2.*sumPopulations(fin[iTop, 0, :])

    # complete the left wall treatement wrt Yu 2002
    fin[iBot, 0, :] = - feq[iTop, 0, :] + (feq[iBot, 0, :] + fin[iTop, 0, :])
    # fin[iBot, 0, :] = fin[iTop, 0, :] + 6 * dot(c, u.transpose(1, 0, 2)) c[iBot][0] * rho*t[iBot]

    # wall boundary handling
    for i in range(q):
        fin[i, wall] = fin[noslip[i], wall]

    # Visualization
    if ( (time % plotEveryN == 0) & (liveUpdate | saveVTK | savePlot) & (time > skipFirstN) ):
        if ( liveUpdate | savePlot ):
            ax.clear()
            ax.imshow(rho.transpose(),  cmap=cm.afmhot, vmin=0.99, vmax=1.01)
Example #2
0
###### Main time loop ##########################################################
for time in range(maxIterations):
    # bounce back distributions at walls
    finc = fin[:, solidDomain].copy()
    for i in range(9):
        fin[i, solidDomain] = finc[noslip[i], :]

    # Right Wall: Produce zero pressure gradient for the outflow
    fin[iLeft, -1, :] = fin[iLeft, -2, :]

    # Calculate macroscopic density and velocity
    (rho, u) = getMacroValues(fin)

    # Left wall: compute density from known populations.
    u[:, 0, :] = vel[:, 0, :]
    rho[0, :] = 1./(1.-u[0, 0, :]) * (sumPopulations(fin[iCentV, 0, :])+2.*sumPopulations(fin[iLeft, 0, :]))

    feq[:,0,:] = equilibrium(rho[0,:], u[:,0,:])

    # complete the left wall treatement wrt Yu 2002
    fin[iRight, 0, :] = feq[iLeft, 0, :] + (feq[iRight, 0, :] - fin[iLeft, 0, :])

    # Collision step.
    fpost[:,fluidDomain] = collisionFunction(fin[:,fluidDomain], rho[fluidDomain], u[:,fluidDomain], omega )

    # Streaming step
    fin = stream(fpost)

    # Visualization
    if ( (time % plotEveryN == 0) & (liveUpdate  | savePlot) & (time > skipFirstN) ):
    #right wall: pressure equal to one
    fin[:,nxl,:] = cumulantBoundary(1, u[:,nxl-1,:])

    #left wall:
    fin[:,0,:] = cumulantBoundary(rho[0,:], vel[:,0,:])

    # Collision step.
    fpost[:,1:nx-1,1:ny-1] = collisionFunction(fin[:,1:nx-1,1:ny-1], rho[1:nx-1,1:ny-1], u[:,1:nx-1,1:ny-1], omega )

    # Streaming step
    fin = stream(fpost)

    # Visualization
    if ( (time % plotEveryN == 0) & (analysis | liveUpdate  | savePlot) & (time > skipFirstN) ):
        # Here, distributions are streamed into the obstacle -> compute drag and lift
        scaling = preComputeFactorForScaling/sumPopulations(fin[:,completeBoundStencil])
        scaledFin = fin.copy()
        # just scale the populations which are used
        for i in range(9):
            scaledFin[i, completeBoundStencil] = scaledFin[i, completeBoundStencil]*scaling

        dragCoeff = drag(scaledFin, obstacleBounds)
        liftCoeff = lift(scaledFin, obstacleBounds)

        if ( liveUpdate | savePlot ):
            ax.clear()
            velocityMag =sqrt(u[0]**2+u[1]**2)
            velocityMag[obstacle] = NAN
            ax.imshow(velocityMag.transpose(),  cmap=cm.afmhot, vmin=0., vmax=0.1)
            ax.set_title('velocity norm')
Example #4
0
    # bounce back distributions at obstacle
    for i in range(q):
        fin[i, obstacle] = fin[noslip[i], obstacle]
    # and walls
    for i in range(q):
        fin[i, boundary] = fin[noslip[i], boundary]

    # Right Wall: Produce zero pressure gradient for the outflow
    fin[iLeft, -1, :] = fin[iLeft, -2, :]

    # Calculate macroscopic density and velocity
    (rho, u) = getMacroValues(fin)

    # Left wall: compute density from known populations.
    u[:, 0, :] = vel[:, 0, :]
    rho[0, :] = 1./(1.-u[0, 0, :]) * (sumPopulations(fin[iCentV, 0, :])+2.*sumPopulations(fin[iLeft, 0, :]))

    feq = equilibrium(rho, u)

    # complete the left wall treatement wrt Yu 2002
    fin[iRight, 0, :] = feq[iLeft, 0, :] + (feq[iRight, 0, :] - fin[iLeft, 0, :])

    # Collision step.
    #fpost = BGKCollide(fin, feq, omega)
    fpost = cumulantCollide(fin, rho, u, omega)

    # Streaming step
    fin = stream(fpost)

    # Visualization
    if ( (time % plotEveryN == 0) & (liveUpdate | saveVTK | savePlot) & (time > skipFirstN) ):
###### Main time loop ##########################################################
for time in range(maxIterations):
    # bounce back distributions at solid domains
    finc = fin[:, solidDomain].copy()
    for i in range(9):
        fin[i, solidDomain] = finc[noslip[i], :]

    # Right Wall: Produce zero pressure gradient for the outflow
    fin[iLeft, -1, :] = fin[iLeft, -2, :]

    # Calculate macroscopic density and velocity
    (rho, u) = getMacroValues(fin)

    # Left wall: compute density from known populations.
    u[:, 0, :] = vel[:, 0, :]
    rho[0, :] = 1./(1.-u[0, 0, :]) * (sumPopulations(fin[iCentV, 0, :])+2.*sumPopulations(fin[iLeft, 0, :]))

    feq[:,0,:] = equilibrium(rho[0,:], u[:,0,:])

    # complete the left wall treatement wrt Yu 2002
    fin[iRight, 0, :] = feq[iLeft, 0, :] + (feq[iRight, 0, :] - fin[iLeft, 0, :])

    # Collision step.
    fpost[:,fluidDomain] = collisionFunction(fin[:,fluidDomain], rho[fluidDomain], u[:,fluidDomain], omega )

    # Streaming step
    fin = stream(fpost)

    # Visualization
    if ( (time % plotEveryN == 0) & (analysis | liveUpdate  | savePlot) & (time > skipFirstN) ):
        # Here, distributions are streamed into the obstacle -> compute drag and lift