Example #1
0
def fit_and_predict_map(B, train_X, train_Y, train_Yvar, test_X, mu, sigma):
    m = ALEBO(B=B, laplace_nsamp=1)  # laplace_nsamp=1 uses MAP estimate
    m.fit([train_X], [train_Y], [train_Yvar], [], [], [], [], [])
    f, var = m.predict(test_X)
    # Return predictions, un-standardized
    return f.squeeze() * sigma + mu, var.squeeze() * sigma**2
Example #2
0
    def testALEBO(self):
        B = torch.tensor(
            [[1.0, 2.0, 3.0, 4.0, 5.0], [2.0, 3.0, 4.0, 5.0, 6.0]],
            dtype=torch.double)
        train_X = torch.tensor(
            [
                [0.0, 0.0, 0.0, 0.0, 0.0],
                [1.0, 1.0, 1.0, 1.0, 1.0],
                [2.0, 2.0, 2.0, 2.0, 2.0],
            ],
            dtype=torch.double,
        )
        train_Y = torch.tensor([[1.0], [2.0], [3.0]], dtype=torch.double)
        train_Yvar = 0.1 * torch.ones(3, 1, dtype=torch.double)

        m = ALEBO(B=B, laplace_nsamp=5, fit_restarts=1)
        self.assertTrue(torch.equal(B, m.B))
        self.assertEqual(m.laplace_nsamp, 5)
        self.assertEqual(m.fit_restarts, 1)
        self.assertEqual(m.refit_on_update, True)
        self.assertEqual(m.refit_on_cv, False)
        self.assertEqual(m.warm_start_refitting, False)

        # Test fit
        m.fit(
            Xs=[train_X, train_X],
            Ys=[train_Y, train_Y],
            Yvars=[train_Yvar, train_Yvar],
            bounds=[(-1, 1)] * 5,
            task_features=[],
            feature_names=[],
            metric_names=[],
            fidelity_features=[],
        )
        self.assertIsInstance(m.model, ModelListGP)
        self.assertTrue(torch.allclose(m.Xs[0], (B @ train_X.t()).t()))

        # Test predict
        f, cov = m.predict(X=B)
        self.assertEqual(f.shape, torch.Size([2, 2]))
        self.assertEqual(cov.shape, torch.Size([2, 2, 2]))

        # Test best point
        objective_weights = torch.tensor([1.0, 0.0], dtype=torch.double)
        with self.assertRaises(NotImplementedError):
            m.best_point(bounds=[(-1, 1)] * 5,
                         objective_weights=objective_weights)

        # Test gen
        # With clipping
        with mock.patch(
                "ax.models.torch.alebo.optimize_acqf",
                autospec=True,
                return_value=(m.Xs[0], torch.tensor([])),
        ):
            Xopt, _, _ = m.gen(
                n=1,
                bounds=[(-1, 1)] * 5,
                objective_weights=torch.tensor([1.0, 0.0], dtype=torch.double),
            )

        self.assertFalse(torch.allclose(Xopt, train_X))
        self.assertTrue(Xopt.min() >= -1)
        self.assertTrue(Xopt.max() <= 1)
        # Without
        with mock.patch(
                "ax.models.torch.alebo.optimize_acqf",
                autospec=True,
                return_value=(torch.ones(1, 2, dtype=torch.double),
                              torch.tensor([])),
        ):
            Xopt, _, _ = m.gen(
                n=1,
                bounds=[(-1, 1)] * 5,
                objective_weights=torch.tensor([1.0, 0.0], dtype=torch.double),
            )

        self.assertTrue(
            torch.allclose(
                Xopt,
                torch.tensor([[-0.2, -0.1, 0.0, 0.1, 0.2]],
                             dtype=torch.double)))

        # Test update
        train_X2 = torch.tensor(
            [
                [3.0, 3.0, 3.0, 3.0, 3.0],
                [1.0, 1.0, 1.0, 1.0, 1.0],
                [2.0, 2.0, 2.0, 2.0, 2.0],
            ],
            dtype=torch.double,
        )
        m.update(
            Xs=[train_X, train_X2],
            Ys=[train_Y, train_Y],
            Yvars=[train_Yvar, train_Yvar],
        )
        self.assertTrue(torch.allclose(m.Xs[0], (B @ train_X.t()).t()))
        self.assertTrue(torch.allclose(m.Xs[1], (B @ train_X2.t()).t()))
        m.refit_on_update = False
        m.update(
            Xs=[train_X, train_X2],
            Ys=[train_Y, train_Y],
            Yvars=[train_Yvar, train_Yvar],
        )

        # Test get_and_fit with single meric
        gp = m.get_and_fit_model(Xs=[(B @ train_X.t()).t()],
                                 Ys=[train_Y],
                                 Yvars=[train_Yvar])
        self.assertIsInstance(gp, ALEBOGP)

        # Test cross_validate
        f, cov = m.cross_validate(
            Xs_train=[train_X],
            Ys_train=[train_Y],
            Yvars_train=[train_Yvar],
            X_test=train_X2,
        )
        self.assertEqual(f.shape, torch.Size([3, 1]))
        self.assertEqual(cov.shape, torch.Size([3, 1, 1]))
        m.refit_on_cv = True
        f, cov = m.cross_validate(
            Xs_train=[train_X],
            Ys_train=[train_Y],
            Yvars_train=[train_Yvar],
            X_test=train_X2,
        )
        self.assertEqual(f.shape, torch.Size([3, 1]))
        self.assertEqual(cov.shape, torch.Size([3, 1, 1]))
Example #3
0
def fit_and_predict_alebo(B, train_X, train_Y, train_Yvar, test_X, mu, sigma):
    m = ALEBO(B=B)
    m.fit([train_X], [train_Y], [train_Yvar], [], [], [], [], [])
    f, var = m.predict(test_X)
    # Return predictions, un-standardized
    return f.squeeze() * sigma + mu, var.squeeze() * sigma**2