Example #1
0
    def testSetStatusQuo(self, mock_fit, mock_observations_from_data):
        # NOTE: If empty data object is not passed, observations are not
        # extracted, even with mock.
        modelbridge = ModelBridge(
            search_space=get_search_space_for_value(),
            model=0,
            experiment=get_experiment_for_value(),
            data=Data(),
            status_quo_name="1_1",
        )
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Alternatively, we can specify by features
        modelbridge = ModelBridge(
            get_search_space_for_value(),
            0,
            [],
            get_experiment_for_value(),
            0,
            status_quo_features=get_observation1().features,
        )
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Alternatively, we can specify on experiment
        # Put a dummy arm with SQ name 1_1 on the dummy experiment.
        exp = get_experiment_for_value()
        sq = Arm(name="1_1", parameters={"x": 3.0})
        exp._status_quo = sq
        # Check that we set SQ to arm 1_1
        modelbridge = ModelBridge(get_search_space_for_value(), 0, [], exp, 0)
        self.assertEqual(modelbridge.status_quo, get_observation1())

        # Errors if features and name both specified
        with self.assertRaises(ValueError):
            modelbridge = ModelBridge(
                get_search_space_for_value(),
                0,
                [],
                exp,
                0,
                status_quo_features=get_observation1().features,
                status_quo_name="1_1",
            )

        # Left as None if features or name don't exist
        modelbridge = ModelBridge(
            get_search_space_for_value(), 0, [], exp, 0, status_quo_name="1_0"
        )
        self.assertIsNone(modelbridge.status_quo)
        modelbridge = ModelBridge(
            get_search_space_for_value(),
            0,
            [],
            get_experiment_for_value(),
            0,
            status_quo_features=ObservationFeatures(parameters={"x": 3.0, "y": 10.0}),
        )
        self.assertIsNone(modelbridge.status_quo)
Example #2
0
 def test_update(self, _mock_update, _mock_gen):
     exp = get_experiment_for_value()
     exp.optimization_config = get_optimization_config_no_constraints()
     ss = get_search_space_for_range_values()
     exp.search_space = ss
     modelbridge = ModelBridge(
         search_space=ss, model=Model(), transforms=[Log], experiment=exp
     )
     exp.new_trial(generator_run=modelbridge.gen(1))
     modelbridge._set_training_data(
         observations_from_data(
             data=Data(
                 pd.DataFrame(
                     [
                         {
                             "arm_name": "0_0",
                             "metric_name": "m1",
                             "mean": 3.0,
                             "sem": 1.0,
                         }
                     ]
                 )
             ),
             experiment=exp,
         ),
         ss,
     )
     exp.new_trial(generator_run=modelbridge.gen(1))
     modelbridge.update(
         new_data=Data(
             pd.DataFrame(
                 [{"arm_name": "1_0", "metric_name": "m1", "mean": 5.0, "sem": 0.0}]
             )
         ),
         experiment=exp,
     )
     exp.new_trial(generator_run=modelbridge.gen(1))
     # Trying to update with unrecognised metric should error.
     with self.assertRaisesRegex(ValueError, "Unrecognised metric"):
         modelbridge.update(
             new_data=Data(
                 pd.DataFrame(
                     [
                         {
                             "arm_name": "1_0",
                             "metric_name": "m2",
                             "mean": 5.0,
                             "sem": 0.0,
                         }
                     ]
                 )
             ),
             experiment=exp,
         )
Example #3
0
 def testSetTrainingDataDupFeatures(self, mock_fit, mock_observations_from_data):
     # Throws an error if repeated features in observations.
     with self.assertRaises(ValueError):
         ModelBridge(
             get_search_space_for_value(),
             0,
             [],
             get_experiment_for_value(),
             0,
             status_quo_name="1_1",
         )
Example #4
0
 def test_gen_on_experiment_with_imm_ss_and_opt_conf(self, _, __):
     exp = get_experiment_for_value()
     exp._properties[Keys.IMMUTABLE_SEARCH_SPACE_AND_OPT_CONF] = True
     exp.optimization_config = get_optimization_config_no_constraints()
     ss = get_search_space_for_range_value()
     modelbridge = ModelBridge(search_space=ss,
                               model=Model(),
                               transforms=[],
                               experiment=exp)
     self.assertTrue(
         modelbridge._experiment_has_immutable_search_space_and_opt_config)
     gr = modelbridge.gen(1)
     self.assertIsNone(gr.optimization_config)
     self.assertIsNone(gr.search_space)
Example #5
0
 def testGenWithDefaults(self, _, mock_gen):
     exp = get_experiment_for_value()
     exp.optimization_config = get_optimization_config_no_constraints()
     ss = get_search_space_for_range_value()
     modelbridge = ModelBridge(ss, None, [], exp)
     modelbridge.gen(1)
     mock_gen.assert_called_with(
         modelbridge,
         n=1,
         search_space=ss,
         fixed_features=ObservationFeatures(parameters={}),
         model_gen_options=None,
         optimization_config=OptimizationConfig(
             objective=Objective(metric=Metric("test_metric"),
                                 minimize=False),
             outcome_constraints=[],
         ),
         pending_observations={},
     )
Example #6
0
    def test_ood_gen(self, _):
        # Test fit_out_of_design by returning OOD candidats
        exp = get_experiment_for_value()
        ss = SearchSpace([RangeParameter("x", ParameterType.FLOAT, 0.0, 1.0)])
        modelbridge = ModelBridge(
            search_space=ss,
            model=Model(),
            transforms=[],
            experiment=exp,
            data=0,
            fit_out_of_design=True,
        )
        obs = ObservationFeatures(parameters={"x": 3.0})
        modelbridge._gen = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._gen",
            autospec=True,
            return_value=([obs], [2], None, {}),
        )
        gr = modelbridge.gen(n=1)
        self.assertEqual(gr.arms[0].parameters, obs.parameters)

        # Test clamping arms by setting fit_out_of_design=False
        modelbridge = ModelBridge(
            search_space=ss,
            model=Model(),
            transforms=[],
            experiment=exp,
            data=0,
            fit_out_of_design=False,
        )
        obs = ObservationFeatures(parameters={"x": 3.0})
        modelbridge._gen = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._gen",
            autospec=True,
            return_value=([obs], [2], None, {}),
        )
        gr = modelbridge.gen(n=1)
        self.assertEqual(gr.arms[0].parameters, {"x": 1.0})
Example #7
0
    def testModelBridge(self, mock_fit, mock_gen_arms,
                        mock_observations_from_data):
        # Test that on init transforms are stored and applied in the correct order
        transforms = [transform_1, transform_2]
        exp = get_experiment_for_value()
        ss = get_search_space_for_value()
        modelbridge = ModelBridge(ss, 0, transforms, exp, 0)
        self.assertEqual(list(modelbridge.transforms.keys()),
                         ["transform_1", "transform_2"])
        fit_args = mock_fit.mock_calls[0][2]
        self.assertTrue(
            fit_args["search_space"] == get_search_space_for_value(8.0))
        self.assertTrue(fit_args["observation_features"] == [])
        self.assertTrue(fit_args["observation_data"] == [])
        self.assertTrue(mock_observations_from_data.called)

        # Test prediction on out of design features.
        modelbridge._predict = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._predict",
            autospec=True,
            side_effect=ValueError("Out of Design"),
        )
        # This point is in design, and thus failures in predict are legitimate.
        with mock.patch.object(ModelBridge,
                               "model_space",
                               return_value=get_search_space_for_range_values):
            with self.assertRaises(ValueError):
                modelbridge.predict([get_observation2().features])

        # This point is out of design, and not in training data.
        with self.assertRaises(ValueError):
            modelbridge.predict([get_observation_status_quo0().features])

        # Now it's in the training data.
        with mock.patch.object(
                ModelBridge,
                "get_training_data",
                return_value=[get_observation_status_quo0()],
        ):
            # Return raw training value.
            self.assertEqual(
                modelbridge.predict([get_observation_status_quo0().features]),
                unwrap_observation_data([get_observation_status_quo0().data]),
            )

        # Test that transforms are applied correctly on predict
        modelbridge._predict = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._predict",
            autospec=True,
            return_value=[get_observation2trans().data],
        )
        modelbridge.predict([get_observation2().features])
        # Observation features sent to _predict are un-transformed afterwards
        modelbridge._predict.assert_called_with([get_observation2().features])

        # Check that _single_predict is equivalent here.
        modelbridge._single_predict([get_observation2().features])
        # Observation features sent to _predict are un-transformed afterwards
        modelbridge._predict.assert_called_with([get_observation2().features])

        # Test transforms applied on gen
        modelbridge._gen = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._gen",
            autospec=True,
            return_value=([get_observation1trans().features], [2], None, {}),
        )
        oc = OptimizationConfig(objective=Objective(metric=Metric(
            name="test_metric")))
        modelbridge._set_kwargs_to_save(model_key="TestModel",
                                        model_kwargs={},
                                        bridge_kwargs={})
        gr = modelbridge.gen(
            n=1,
            search_space=get_search_space_for_value(),
            optimization_config=oc,
            pending_observations={"a": [get_observation2().features]},
            fixed_features=ObservationFeatures({"x": 5}),
        )
        self.assertEqual(gr._model_key, "TestModel")
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=oc,
            pending_observations={"a": [get_observation2trans().features]},
            fixed_features=ObservationFeatures({"x": 36}),
            model_gen_options=None,
        )
        mock_gen_arms.assert_called_with(
            arms_by_signature={},
            observation_features=[get_observation1().features])

        # Gen with no pending observations and no fixed features
        modelbridge.gen(n=1,
                        search_space=get_search_space_for_value(),
                        optimization_config=None)
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=None,
            pending_observations={},
            fixed_features=ObservationFeatures({}),
            model_gen_options=None,
        )

        # Gen with multi-objective optimization config.
        oc2 = OptimizationConfig(objective=ScalarizedObjective(
            metrics=[Metric(name="test_metric"),
                     Metric(name="test_metric_2")]))
        modelbridge.gen(n=1,
                        search_space=get_search_space_for_value(),
                        optimization_config=oc2)
        modelbridge._gen.assert_called_with(
            n=1,
            search_space=SearchSpace(
                [FixedParameter("x", ParameterType.FLOAT, 8.0)]),
            optimization_config=oc2,
            pending_observations={},
            fixed_features=ObservationFeatures({}),
            model_gen_options=None,
        )

        # Test transforms applied on cross_validate
        modelbridge._cross_validate = mock.MagicMock(
            "ax.modelbridge.base.ModelBridge._cross_validate",
            autospec=True,
            return_value=[get_observation1trans().data],
        )
        cv_training_data = [get_observation2()]
        cv_test_points = [get_observation1().features]
        cv_predictions = modelbridge.cross_validate(
            cv_training_data=cv_training_data, cv_test_points=cv_test_points)
        modelbridge._cross_validate.assert_called_with(
            obs_feats=[get_observation2trans().features],
            obs_data=[get_observation2trans().data],
            cv_test_points=[get_observation1().features
                            ],  # untransformed after
        )
        self.assertTrue(cv_predictions == [get_observation1().data])

        # Test stored training data
        obs = modelbridge.get_training_data()
        self.assertTrue(obs == [get_observation1(), get_observation2()])
        self.assertEqual(modelbridge.metric_names, {"a", "b"})
        self.assertIsNone(modelbridge.status_quo)
        self.assertTrue(
            modelbridge.model_space == get_search_space_for_value())
        self.assertEqual(modelbridge.training_in_design, [False, False])

        with self.assertRaises(ValueError):
            modelbridge.training_in_design = [True, True, False]

        with self.assertRaises(ValueError):
            modelbridge.training_in_design = [True, True, False]

        # Test feature_importances
        with self.assertRaises(NotImplementedError):
            modelbridge.feature_importances("a")
Example #8
0
 def testNoOutOfDesign(self, mock_fit, mock_observations_from_data):
     exp = get_experiment_for_value()
     modelbridge = ModelBridge(get_search_space_for_value(), 0, [], exp, 0)
     self.assertEqual(modelbridge.out_of_design_data(), None)