def crossover_rows(self, rows1: List[List],
                    rows2: List[List]) -> List[List]:
     num_states = len(rows1) // 2
     cross_point = 2 * self._random.randint(0, num_states)
     new_rows = copy_lists(rows1[:cross_point])
     new_rows += copy_lists(rows2[cross_point:])
     return new_rows
Example #2
0
 def __init__(self,
              transitions_C=None,
              transitions_D=None,
              emission_probabilities=None,
              initial_state=0,
              initial_action=C) -> None:
     super().__init__()
     if not transitions_C:
         transitions_C = [[1]]
         transitions_D = [[1]]
         emission_probabilities = [0.5]  # Not stochastic
         initial_state = 0
     self.initial_state = initial_state
     self.initial_action = initial_action
     self.hmm = SimpleHMM(copy_lists(transitions_C),
                          copy_lists(transitions_D),
                          list(emission_probabilities), initial_state)
     assert self.hmm.is_well_formed()
     self.state = self.hmm.state
     self.classifier["stochastic"] = self.is_stochastic()
Example #3
0
 def crossover_rows(rows1, rows2):
     num_states = len(rows1) // 2
     cross_point = 2 * randrange(num_states)
     new_rows = copy_lists(rows1[:cross_point])
     new_rows += copy_lists(rows2[cross_point:])
     return new_rows
Example #4
0
 def test_copy_lists(self):
     l1 = [list(range(10)), list(range(20))]
     l2 = copy_lists(l1)
     self.assertIsNot(l1, l2)