def __init__(self, transitions_C=None, transitions_D=None, emission_probabilities=None, initial_state=0, initial_action=C, num_states=None, mutation_probability=None) -> None: transitions_C, transitions_D, emission_probabilities, initial_state, initial_action, num_states, mutation_probability = self._normalize_parameters( transitions_C, transitions_D, emission_probabilities, initial_state, initial_action, num_states, mutation_probability) self.mutation_probability = mutation_probability HMMPlayer.__init__(self, transitions_C=transitions_C, transitions_D=transitions_D, emission_probabilities=emission_probabilities, initial_state=initial_state, initial_action=initial_action) EvolvablePlayer.__init__(self) self.overwrite_init_kwargs( transitions_C=transitions_C, transitions_D=transitions_D, emission_probabilities=emission_probabilities, initial_state=initial_state, initial_action=initial_action, num_states=num_states, mutation_probability=mutation_probability)
def __init__( self, lookup_dict: dict = None, initial_actions: tuple = None, pattern: Any = None, # pattern is str or tuple of Action's. parameters: Plays = None, mutation_probability: float = None ) -> None: lookup_dict, initial_actions, pattern, parameters, mutation_probability = self._normalize_parameters( lookup_dict, initial_actions, pattern, parameters, mutation_probability ) LookerUp.__init__( self, lookup_dict=lookup_dict, initial_actions=initial_actions, pattern=pattern, parameters=parameters, ) EvolvablePlayer.__init__(self) self.mutation_probability = mutation_probability self.overwrite_init_kwargs( lookup_dict=lookup_dict, initial_actions=initial_actions, pattern=pattern, parameters=parameters, mutation_probability=mutation_probability, )
def __init__(self, cycle: str = None, cycle_length: int = None, mutation_probability: float = 0.2, mutation_potency: int = 1, seed: int = None) -> None: EvolvablePlayer.__init__(self, seed=seed) cycle, cycle_length = self._normalize_parameters(cycle, cycle_length) Cycler.__init__(self, cycle=cycle) # Overwrite init_kwargs in the case that we generated a new cycle from cycle_length self.overwrite_init_kwargs(cycle=cycle, cycle_length=cycle_length) self.mutation_probability = mutation_probability self.mutation_potency = mutation_potency
def __init__( self, num_features: int, num_hidden: int, weights: List[float] = None, mutation_probability: float = None, mutation_distance: int = 5, ) -> None: num_features, num_hidden, weights, mutation_probability = self._normalize_parameters( num_features, num_hidden, weights, mutation_probability) ANN.__init__(self, num_features=num_features, num_hidden=num_hidden, weights=weights) EvolvablePlayer.__init__(self) self.mutation_probability = mutation_probability self.mutation_distance = mutation_distance self.overwrite_init_kwargs( num_features=num_features, num_hidden=num_hidden, weights=weights, mutation_probability=mutation_probability)
def __init__(self, transitions: tuple = None, initial_state: int = None, initial_action: Action = None, num_states: int = None, mutation_probability: float = 0.1, seed: int = None) -> None: """If transitions, initial_state, and initial_action are None then generate random parameters using num_states.""" EvolvablePlayer.__init__(self, seed=seed) transitions, initial_state, initial_action, num_states = self._normalize_parameters( transitions, initial_state, initial_action, num_states) FSMPlayer.__init__(self, transitions=transitions, initial_state=initial_state, initial_action=initial_action) self.mutation_probability = mutation_probability self.overwrite_init_kwargs(transitions=transitions, initial_state=initial_state, initial_action=initial_action, num_states=self.num_states)