tenant_id=auth_config["tenant_id"], service_principal_id=auth_config["service_principal_id"], service_principal_password=os.environ["SP_SECRET"], ) ws = Workspace( subscription_id=auth_config["subscription_id"], resource_group=auth_config["resource_group"], workspace_name=auth_config["workspace_name"], auth=auth, ) # Usually, the cluster already exists, so we just fetch compute_target = next( (m for m in ComputeTarget.list(ws) if m.name == compute["name"]), None ) # Specify the compute environment and register it for use in scoring env = Environment("component-condition") env.docker.enabled = True cd = CondaDependencies.create( conda_packages=[ "tensorflow=2.0.0", "pandas", "numpy", "matplotlib" ], pip_packages=[ "azureml-mlflow==1.5.0", "azureml-defaults==1.5.0"
print("Azure ML SDK Version: ", azureml.core.VERSION) ws = Workspace.from_config() print("Resource group: ", ws.resource_group) print("Location: ", ws.location) print("Workspace name: ", ws.name) from azureml.core.webservice import Webservice for web_svc in Webservice.list(ws): print("Deleting web service", web_svc.name, "...") web_svc.delete() from azureml.core import ComputeTarget for target in ComputeTarget.list(ws): print("Deleting compute target", target.name, "...") target.delete() from azureml.core import Image for img in Image.list(ws): print("Deleting image", img.id, "...") img.delete() from azureml.core.model import Model for model in Model.list(ws): print("Deleting model", model.id, "...") model.delete()