Example #1
0
            assert len(header) == len(data)
            for key, value in zip(header, data):
                writer.add_scalar(key, float(value), status['num_frames'])

        csv_writer.writerow(data)

    # Save obss preprocessor vocabulary and model

    if args.save_interval > 0 and status['i'] % args.save_interval == 0:
        obss_preprocessor.vocab.save()
        with open(status_path, 'w') as dst:
            json.dump(status, dst)
            utils.save_model(acmodel, args.model)

        # Testing the model before saving
        agent = ModelAgent(args.model, obss_preprocessor, argmax=True)
        agent.model = acmodel
        agent.model.eval()
        logs = batch_evaluate(agent, test_env_name, args.val_seed,
                              args.val_episodes)
        agent.model.train()
        mean_return = np.mean(logs["return_per_episode"])
        success_rate = np.mean(
            [1 if r > 0 else 0 for r in logs['return_per_episode']])
        save_model = False
        if success_rate > best_success_rate:
            best_success_rate = success_rate
            save_model = True
        elif (success_rate
              == best_success_rate) and (mean_return > best_mean_return):
            best_mean_return = mean_return
Example #2
0
            assert len(header) == len(data)
            for key, value in zip(header, data):
                writer.add_scalar(key, float(value), status['num_frames'])

        csv_writer.writerow(data)

    # Save obss preprocessor vocabulary and model

    if args.save_interval > 0 and status['i'] % args.save_interval == 0:
        obss_preprocessor.vocab.save()
        with open(status_path, 'w') as dst:
            json.dump(status, dst)
            utils.save_model(acmodel, args.model)

        # Testing the model before saving
        agent = ModelAgent(args.model, obss_preprocessor, argmax=True, timepoint_bounds=(5, 15))
        agent.model = acmodel
        agent.model.eval()
        logs = batch_evaluate(agent, test_env_name, args.val_seed, args.val_episodes, pixel=use_pixel, return_obss_actions=True)
        order = sorted(range(len(logs['return_per_episode'])), key=lambda i: logs["observations_per_episode"][i][0]["mission"])
        for i in order:
            obs = logs["observations_per_episode"][i]
            acts = logs["manager_actions_per_episode"][i]
            print(obs[0]["mission"], acts)
        agent.model.train()
        mean_return = np.mean(logs["return_per_episode"])
        success_rate = np.mean([1 if r > 0 else 0 for r in logs['return_per_episode']])
        save_model = False

        logger.info("Success rate: {}, best".format(success_rate, best_success_rate))
        if success_rate > best_success_rate:
Example #3
0
def main():
    # Generate environments
    envs = []
    for i in range(args.procs):
        env = gym.make(args.env)
        env.seed(100 * args.seed + i)
        envs.append(env)

    # Define model name
    suffix = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
    instr = args.instr_arch if args.instr_arch else "noinstr"
    mem = "mem" if not args.no_mem else "nomem"
    model_name_parts = {
        'env': args.env,
        'algo': args.algo,
        'arch': args.arch,
        'instr': instr,
        'mem': mem,
        'seed': args.seed,
        'info': '',
        'coef': '',
        'suffix': suffix}
    default_model_name = "{env}_{algo}_{arch}_{instr}_{mem}_seed{seed}{info}{coef}_{suffix}".format(**model_name_parts)
    if args.pretrained_model:
        default_model_name = args.pretrained_model + '_pretrained_' + default_model_name
    args.model = args.model.format(**model_name_parts) if args.model else default_model_name

    utils.configure_logging(args.model)
    logger = logging.getLogger(__name__)

    # Define obss preprocessor
    if 'emb' in args.arch:
        obss_preprocessor = utils.IntObssPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
    else:
        """
        obss_preprocessor = utils.ObssPreprocessor(args.model, envs[0].observation_space, args.pretrained_model)
        """
        obss_preprocessor = utils.ImgInstrObssPreprocessor(args.model, envs[0].observation_space)

    # Define actor-critic model
    acmodel = utils.load_model(args.model, raise_not_found=False)
    if acmodel is None:
        if args.pretrained_model:
            acmodel = utils.load_model(args.pretrained_model, raise_not_found=True)
        else:
            """
            acmodel = ACModel(obss_preprocessor.obs_space, envs[0].action_space,
                              args.image_dim, args.memory_dim, args.instr_dim,
                              not args.no_instr, args.instr_arch, not args.no_mem, args.arch)
            """
            acmodel = ACModelImgInstr(obss_preprocessor.obs_space, envs[0].action_space,
                                      args.image_dim, args.memory_dim, args.instr_dim,
                                      not args.no_instr, not args.no_mem, args.arch)

    """
    obss_preprocessor.vocab.save()
    """
    utils.save_model(acmodel, args.model)

    if torch.cuda.is_available():
        acmodel.cuda()

    # Define actor-critic algo

    reshape_reward = lambda _0, _1, reward, _2: args.reward_scale * reward
    if args.algo == "ppo":
        algo = babyai.rl.PPOAlgo(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.beta1, args.beta2,
                                 args.gae_lambda,
                                 args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence,
                                 args.optim_eps, args.clip_eps, args.ppo_epochs, args.batch_size, obss_preprocessor,
                                 reshape_reward)
    else:
        raise ValueError("Incorrect algorithm name: {}".format(args.algo))

    # When using extra binary information, more tensors (model params) are initialized compared to when we don't use that.
    # Thus, there starts to be a difference in the random state. If we want to avoid it, in order to make sure that
    # the results of supervised-loss-coef=0. and extra-binary-info=0 match, we need to reseed here.

    utils.seed(args.seed)

    # Restore training status

    status_path = os.path.join(utils.get_log_dir(args.model), 'status.json')
    if os.path.exists(status_path):
        with open(status_path, 'r') as src:
            status = json.load(src)
    else:
        status = {'i': 0,
                  'num_episodes': 0,
                  'num_frames': 0}

    # Define logger and Tensorboard writer and CSV writer

    header = (["update", "episodes", "frames", "FPS", "duration"]
              + ["return_" + stat for stat in ['mean', 'std', 'min', 'max']]
              + ["success_rate"]
              + ["num_frames_" + stat for stat in ['mean', 'std', 'min', 'max']]
              + ["entropy", "value", "policy_loss", "value_loss", "loss", "grad_norm"])
    if args.tb:
        from tensorboardX import SummaryWriter

        writer = SummaryWriter(utils.get_log_dir(args.model))
    csv_path = os.path.join(utils.get_log_dir(args.model), 'log.csv')
    first_created = not os.path.exists(csv_path)
    # we don't buffer data going in the csv log, cause we assume
    # that one update will take much longer that one write to the log
    csv_writer = csv.writer(open(csv_path, 'a', 1))
    if first_created:
        csv_writer.writerow(header)

    # Log code state, command, availability of CUDA and model

    babyai_code = list(babyai.__path__)[0]
    try:
        last_commit = subprocess.check_output(
            'cd {}; git log -n1'.format(babyai_code), shell=True).decode('utf-8')
        logger.info('LAST COMMIT INFO:')
        logger.info(last_commit)
    except subprocess.CalledProcessError:
        logger.info('Could not figure out the last commit')
    try:
        diff = subprocess.check_output(
            'cd {}; git diff'.format(babyai_code), shell=True).decode('utf-8')
        if diff:
            logger.info('GIT DIFF:')
            logger.info(diff)
    except subprocess.CalledProcessError:
        logger.info('Could not figure out the last commit')
    logger.info('COMMAND LINE ARGS:')
    logger.info(args)
    logger.info("CUDA available: {}".format(torch.cuda.is_available()))
    logger.info(acmodel)

    # Train model

    total_start_time = time.time()
    best_success_rate = 0
    best_mean_return = 0
    test_env_name = args.env
    while status['num_frames'] < args.frames:
        # Update parameters

        update_start_time = time.time()
        logs = algo.update_parameters()
        update_end_time = time.time()

        status['num_frames'] += logs["num_frames"]
        status['num_episodes'] += logs['episodes_done']
        status['i'] += 1

        # Print logs

        if status['i'] % args.log_interval == 0:
            total_ellapsed_time = int(time.time() - total_start_time)
            fps = logs["num_frames"] / (update_end_time - update_start_time)
            duration = datetime.timedelta(seconds=total_ellapsed_time)
            return_per_episode = utils.synthesize(logs["return_per_episode"])
            success_per_episode = utils.synthesize(
                [1 if r > 0 else 0 for r in logs["return_per_episode"]])
            num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])

            data = [status['i'], status['num_episodes'], status['num_frames'],
                    fps, total_ellapsed_time,
                    *return_per_episode.values(),
                    success_per_episode['mean'],
                    *num_frames_per_episode.values(),
                    logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"],
                    logs["loss"], logs["grad_norm"]]

            format_str = ("U {} | E {} | F {:06} | FPS {:04.0f} | D {} | R:xsmM {: .2f} {: .2f} {: .2f} {: .2f} | "
                          "S {:.2f} | F:xsmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | "
                          "pL {: .3f} | vL {:.3f} | L {:.3f} | gN {:.3f} | ")

            logger.info(format_str.format(*data))
            if args.tb:
                assert len(header) == len(data)
                for key, value in zip(header, data):
                    writer.add_scalar(key, float(value), status['num_frames'])

            csv_writer.writerow(data)

        # Save obss preprocessor vocabulary and model

        if args.save_interval > 0 and status['i'] % args.save_interval == 0:
            """
            obss_preprocessor.vocab.save()
            """
            with open(status_path, 'w') as dst:
                json.dump(status, dst)
                utils.save_model(acmodel, args.model)

            # Testing the model before saving
            agent = ModelAgent(args.model, obss_preprocessor, argmax=True)
            agent.model = acmodel
            agent.model.eval()
            logs = batch_evaluate(agent, test_env_name, args.val_seed, args.val_episodes)
            agent.model.train()
            mean_return = np.mean(logs["return_per_episode"])
            success_rate = np.mean([1 if r > 0 else 0 for r in logs['return_per_episode']])
            save_model = False
            if success_rate > best_success_rate:
                best_success_rate = success_rate
                save_model = True
            elif (success_rate == best_success_rate) and (mean_return > best_mean_return):
                best_mean_return = mean_return
                save_model = True
            if save_model:
                utils.save_model(acmodel, args.model + '_best')
                """
                obss_preprocessor.vocab.save(utils.get_vocab_path(args.model + '_best'))
                """
                logger.info("Return {: .2f}; best model is saved".format(mean_return))
            else:
                logger.info("Return {: .2f}; not the best model; not saved".format(mean_return))
Example #4
0
    help=
    'Probability of performing the non-optimal action when the random/model agent is performing'
)
parser.add_option("--seed", type="int", default=1)
parser.add_option("--num_runs", type="int", default=500)
parser.add_option("--verbose", action='store_true')
(options, args) = parser.parse_args()

if options.level:
    level_list = [options.level]

bad_agent = None
if options.advise_mode:
    if options.model:
        bad_agent = ModelAgent(options.model,
                               obss_preprocessor=None,
                               argmax=True)
    else:
        bad_agent = RandomAgent(seed=options.random_agent_seed)

start_time = time.time()

all_good = True

for level_name in level_list:
    print("Starting level ", level_name)

    num_success = 0
    total_reward = 0
    total_steps = []
    total_bfs = 0