Example #1
0
def implied_vol_vw(df_metrics, df_res, dt_list_term_structure):
    optionset = BaseOptionSet(df_metrics,rf=0.0)
    optionset.init()
    list_res_iv = []
    iv_term_structure = []
    while optionset.current_index < optionset.nbr_index:
        dt_maturity = optionset.select_maturity_date(nbr_maturity=0, min_holding=min_holding)
        iv_volume_weighted = optionset.get_volume_weighted_iv(dt_maturity)
        list_res_iv.append({'date': optionset.eval_date, 'iv': iv_volume_weighted})
        if optionset.eval_date in dt_list_term_structure:
            mdt_2 = optionset.select_maturity_date(nbr_maturity=1, min_holding=0)
            mdt_3 = optionset.select_maturity_date(nbr_maturity=2, min_holding=0)
            iv_2 = optionset.get_volume_weighted_iv(mdt_2)
            if mdt_3 is None:
                iv_3 = None
            else:
                iv_3 = optionset.get_volume_weighted_iv(mdt_3)
            iv_term_structure.append({'date': optionset.eval_date, 'iv1': iv_volume_weighted, 'iv2': iv_2, 'iv3': iv_3})
        if not optionset.has_next(): break
        optionset.next()
    df_iv = pd.DataFrame(list_res_iv).sort_values(by='date', ascending=False).reset_index(drop=True)
    df_res.loc[:, 'N:date'] = df_iv['date']
    df_res.loc[:, 'O:iv'] = df_iv['iv']
    df_res.loc[:, 'P'] = None
    df_res.loc[:, 'Q'] = None
    df_res.loc[:, 'R'] = None
    df_res.loc[:, 'S'] = None
    df_res.loc[:, 'T'] = None
    print(df_iv)
    df = pd.DataFrame(iv_term_structure)
    df.to_csv('../data/' + name_code + '_iv_term_structure.csv')

    return df_res
Example #2
0
def implied_vol_vw(last_week, end_date, df_metrics, df_res, name_code):
    m = 100
    optionset = BaseOptionSet(df_metrics, rf=0.0)
    optionset.init()
    list_res_iv = []
    while optionset.current_index < optionset.nbr_index:
        dt_maturity = optionset.select_maturity_date(nbr_maturity=0,
                                                     min_holding=min_holding)
        iv_volume_weighted = optionset.get_volume_weighted_iv(dt_maturity)
        list_res_iv.append({
            'date': optionset.eval_date,
            'iv': iv_volume_weighted
        })
        if not optionset.has_next(): break
        optionset.next()
    df_iv = pd.DataFrame(list_res_iv).sort_values(
        by='date', ascending=False).reset_index(drop=True)
    df_res.loc[:, name_code + ':N:date'] = df_iv['date']
    df_res.loc[:, name_code + ':O:iv'] = df_iv['iv'] * m
    return df_res
Example #3
0
def implied_vol_avg(last_week, end_date, df_metrics, df_res, name_code):
    m = 100
    optionset = BaseOptionSet(df_metrics, rf=0.03)
    optionset.init()
    list_res_iv = []
    while optionset.current_index < optionset.nbr_index:
        dt_maturity = optionset.select_maturity_date(nbr_maturity=0,
                                                     min_holding=min_holding)
        list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=0, maturity=dt_maturity)
        atm_call = optionset.select_higher_volume(list_atm_call)
        atm_put = optionset.select_higher_volume(list_atm_put)
        iv_call = atm_call.get_implied_vol()
        iv_put = atm_put.get_implied_vol()
        iv = (iv_put + iv_call) / 2.0
        list_res_iv.append({'date': optionset.eval_date, 'iv': iv})
        if not optionset.has_next(): break
        optionset.next()
    df_iv = pd.DataFrame(list_res_iv).sort_values(
        by='date', ascending=False).reset_index(drop=True)
    df_res.loc[:, name_code + ':N:date'] = df_iv['date']
    df_res.loc[:, name_code + ':O:iv'] = df_iv['iv'] * m
    return df_res
Example #4
0
class Indexing():
    def __init__(self, start_date, end_date):
        df_metrics = option_data(start_date, end_date)
        self.optionset = BaseOptionSet(df_metrics, rf=0.03)
        self.optionset.init()

    def fun_otm_quote(self, df):
        if df[Util.AMT_APPLICABLE_STRIKE] > df['mid_k']:
            quote = df['amt_call_quote']
        elif df[Util.AMT_APPLICABLE_STRIKE] < df['mid_k']:
            quote = df['amt_put_quote']
        else:
            quote = (df['amt_call_quote'] + df['amt_put_quote']) / 2.0
        return quote

    def fun_for_p1(self, df):
        DK = df['amt_delta_k']
        Q = df['amt_otm_quote']
        K = df[Util.AMT_APPLICABLE_STRIKE]
        res = Q * DK / K**2
        return Q * DK / K**2

    def fun_for_p2(self, df):
        DK = df['amt_delta_k']
        Q = df['amt_otm_quote']
        K = df[Util.AMT_APPLICABLE_STRIKE]
        F = df['F']
        return 2 * (1 - math.log(K / F, math.e)) * Q * DK / K**2

    def fun_for_p3(self, df):
        DK = df['amt_delta_k']
        Q = df['amt_otm_quote']
        K = df[Util.AMT_APPLICABLE_STRIKE]
        F = df['F']
        return 3 * (2 * math.log(K / F, math.e) -
                    math.log(K / F, math.e)**2) * Q * DK / K**2

    def fun_for_sigma(self, df):
        DK = df['amt_delta_k']
        Q = df['amt_otm_quote']
        K = df[Util.AMT_APPLICABLE_STRIKE]
        return Q * DK / K**2

    def get_e1(self, F, K):
        return -(1 + math.log(F / K, math.e) - F / K)

    def get_e2(self, F, K):
        return 2 * math.log(K / F, math.e) * (F / K - 1) + 0.5 * math.log(
            K / F, math.e)**2

    def get_e3(self, F, K):
        return 3 * (math.log(K / F, math.e)**2) * (
            (1.0 / 3.0) * math.log(K / F, math.e) + F / K - 1)

    def get_S(self, p1, p2, p3):
        res = (p3 - 3 * p1 * p2 + 2 * p1**3) / (p2 - p1**2)**1.5
        return res

    def get_T_quotes(self, df_mdt, eval_date):
        df_call = df_mdt[df_mdt[Util.CD_OPTION_TYPE] == Util.STR_CALL].rename(
            columns={Util.AMT_CLOSE: 'amt_call_quote'})
        df_put = df_mdt[df_mdt[Util.CD_OPTION_TYPE] == Util.STR_PUT].rename(
            columns={Util.AMT_CLOSE: 'amt_put_quote'})
        df_call = df_call.drop_duplicates(
            Util.AMT_APPLICABLE_STRIKE).reset_index(drop=True)
        df_put = df_put.drop_duplicates(
            Util.AMT_APPLICABLE_STRIKE).reset_index(drop=True)

        df = pd.merge(df_call[[
            'amt_call_quote', Util.AMT_APPLICABLE_STRIKE, Util.AMT_STRIKE
        ]],
                      df_put[['amt_put_quote', Util.AMT_APPLICABLE_STRIKE]],
                      how='inner',
                      on=Util.AMT_APPLICABLE_STRIKE)
        # df = pd.concat([df_call[['amt_call_quote']], df_put[['amt_put_quote']]], axis=1, join='inner', verify_integrity=True)
        df[Util.AMT_UNDERLYING_CLOSE] = df_put[
            Util.AMT_UNDERLYING_CLOSE].values[0]
        df['amt_cp_diff'] = abs(df['amt_call_quote'] - df['amt_put_quote'])
        maturitydt = df_put[Util.DT_MATURITY].values[0]
        df[Util.DT_MATURITY] = maturitydt
        ttm = (
            (maturitydt - eval_date).total_seconds() / 60.0) / (365.0 * 1440)
        df['amt_ttm'] = ttm
        df['amt_fv'] = math.exp(self.optionset.rf * (ttm))
        df = df.sort_values(by=Util.AMT_APPLICABLE_STRIKE).reset_index(
            drop=True)
        dk = df[Util.AMT_APPLICABLE_STRIKE].diff(periods=2).dropna() / 2.0
        dk.loc[1] = df.loc[1, Util.AMT_APPLICABLE_STRIKE] - df.loc[
            0, Util.AMT_APPLICABLE_STRIKE]
        dk.loc[len(df)] = df.loc[len(df) - 1,
                                 Util.AMT_APPLICABLE_STRIKE] - df.loc[
                                     len(df) - 2, Util.AMT_APPLICABLE_STRIKE]
        dk = dk.sort_index()
        dk = dk.reset_index(drop=True)
        df['amt_delta_k'] = dk
        return df

    def forward_cboe(self, t_quotes, eval_date):
        # ATM strike k0 -- First strike below the forward index level, F
        # Forward price F -- F, by identifying the strike price at which the absolute difference
        # between the call and put prices is smallest.
        df = t_quotes.set_index(Util.AMT_APPLICABLE_STRIKE)
        mid_k = df.sort_values(by='amt_cp_diff', ascending=True).index[0]
        p_call = df.loc[mid_k, 'amt_call_quote']
        p_put = df.loc[mid_k, 'amt_put_quote']
        F = df.loc[mid_k, 'amt_fv'] * (p_call - p_put) + mid_k
        df['k-f'] = df.index - F
        if len(df[df['k-f'] < 0]) > 0:
            K0 = df[df['k-f'] < 0].sort_values(by='amt_cp_diff',
                                               ascending=True).index[0]
        else:
            K0 = df.sort_values(by='amt_cp_diff', ascending=True).index[0]
        return mid_k, K0, F

    """ K0 is the 1st strike below F0 """

    def for_calculation(self, df, eval_date):
        mid_k, k0, F = self.forward_cboe(df, eval_date)
        ttm = df.loc[0, 'amt_ttm']
        S = df.loc[0, 'amt_underlying_close']
        implied_r = math.log(F / S, math.e) / ttm
        self.implied_rf = implied_r
        df['k0'] = k0
        df['mid_k'] = mid_k
        df['F'] = F
        df['amt_otm_quote'] = df.apply(self.fun_otm_quote, axis=1)
        return df

    def calculate_S_for_skew(self, df):
        k0 = df.loc[0, 'k0']
        F = df.loc[0, 'F']
        e1 = self.get_e1(F, k0)
        e2 = self.get_e2(F, k0)
        e3 = self.get_e3(F, k0)
        df['for_p1'] = df.apply(self.fun_for_p1, axis=1)
        df['for_p2'] = df.apply(self.fun_for_p2, axis=1)
        df['for_p3'] = df.apply(self.fun_for_p3, axis=1)
        fv = df.loc[0, 'amt_fv']
        p1 = -fv * df['for_p1'].sum() + e1
        p2 = fv * df['for_p2'].sum() + e2
        p3 = fv * df['for_p3'].sum() + e3
        S = self.get_S(p1, p2, p3)
        SKEW = 100 - 10 * S
        # S_r = self.get_S(-0.00173,0.003606,-0.00049)
        # SKEW_r = 100-10*S_r
        return S

    def calculate_sigma_for_vix(self, df):
        df['for_sigma'] = df.apply(self.fun_for_sigma, axis=1)
        k0 = df.loc[0, 'k0']
        F = df.loc[0, 'F']
        T = df.loc[0, 'amt_ttm']
        fv = df.loc[0, 'amt_fv']
        v1 = (1.0 / T) * (F / k0 - 1)**2
        # v1 = (F / K - 1) ** 2
        sum = df['for_sigma'].sum()
        sigma = (2.0 / T) * fv * sum - v1
        # sigma = 2.0 * fv * sum - v1
        return sigma

    def calculate(self, eval_date):
        df_daily_state = self.optionset.get_current_state()
        mdt = self.optionset.get_maturities_list()[0]
        if (mdt - self.optionset.eval_date).days <= 5:
            mdt1 = self.optionset.get_maturities_list()[1]
            mdt2 = self.optionset.get_maturities_list()[2]
        else:
            mdt1 = self.optionset.get_maturities_list()[0]
            mdt2 = self.optionset.get_maturities_list()[1]
        df_mdt1 = OptionUtil.get_df_by_mdt(df_daily_state, mdt1)
        df_mdt2 = OptionUtil.get_df_by_mdt(df_daily_state, mdt2)
        t_quotes1 = self.get_T_quotes(df_mdt1, eval_date)
        t_quotes2 = self.get_T_quotes(df_mdt2, eval_date)
        # t_quotes1.to_csv('t_quotes1.csv')
        # t_quotes2.to_csv('t_quotes2.csv')
        calculate1 = self.for_calculation(t_quotes1, eval_date)
        calculate2 = self.for_calculation(t_quotes2, eval_date)
        S1 = self.calculate_S_for_skew(calculate1)
        S2 = self.calculate_S_for_skew(calculate2)

        sigma1 = self.calculate_sigma_for_vix(calculate1)
        sigma2 = self.calculate_sigma_for_vix(calculate2)
        T1 = calculate1.loc[0, 'amt_ttm']
        T2 = calculate2.loc[0, 'amt_ttm']
        NT1 = (mdt1 - eval_date).total_seconds() / 60.0
        NT2 = (mdt2 - eval_date).total_seconds() / 60.0
        N30 = 30 * 1440.0
        N365 = 365 * 1440.0
        w = (NT2 - N30) / (NT2 - NT1)
        skew = 100 - 10 * (w * S1 + (1 - w) * S2)
        vix = 100 * math.sqrt(
            (T1 * sigma1 * w + T2 * sigma2 * (1 - w)) * N365 / N30)
        return vix, skew

    def get_atm_options(self, maturity):
        list_atm_call, list_atm_put = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=0, maturity=maturity)
        atm_call = self.optionset.select_higher_volume(list_atm_call)
        atm_put = self.optionset.select_higher_volume(list_atm_put)
        return atm_call, atm_put

    def get_atm_iv_average(self, maturity):
        atm_call, atm_put = self.get_atm_options(maturity)
        iv_call = atm_call.get_implied_vol()
        iv_put = atm_put.get_implied_vol()
        iv_avg = (iv_call + iv_put) / 2
        return iv_avg

    def run(self):
        self.df_res = pd.DataFrame()
        print('=' * 120)
        print("%10s %20s %20s %20s %20s %20s" %
              ('eval_date', 'vix', 'skew', 'iv_htr', 'iv_avg', 'htbr'))
        print('-' * 120)
        while self.optionset.current_index < self.optionset.nbr_index:
            eval_date = self.optionset.eval_date
            try:
                maturity = self.optionset.select_maturity_date(
                    nbr_maturity, min_holding=min_holding)
                iv_htr = self.optionset.get_atm_iv_by_htbr(maturity)
                iv_avg = self.get_atm_iv_average(maturity)
                htbr = self.optionset.get_htb_rate(maturity)
                vix, skew = self.calculate(eval_date)
                self.df_res.loc[eval_date, 'skew'] = skew
                self.df_res.loc[eval_date, 'vix'] = vix
                self.df_res.loc[
                    eval_date,
                    '50ETF'] = self.optionset.get_underlying_close()
                self.df_res.loc[eval_date, 'htb_rate'] = htbr
                self.df_res.loc[eval_date, 'iv_atm_htr'] = iv_htr
                self.df_res.loc[eval_date, 'iv_atm_avg'] = iv_avg
                print("%10s %20s %20s %20s %20s %20s" %
                      (eval_date, vix, skew, iv_htr, iv_avg, htbr))

            except:
                pass
            if not self.optionset.has_next(): break
            self.optionset.next()
Example #5
0
class ParityArbitrage(object):
    def __init__(self,name_code, df_option, df_etf=None, df_future_all=None,df_index=None):
        self.name_code = name_code
        self.df_option = df_option
        self.df_etf = df_etf
        self.df_future_all = df_future_all
        self.df_index = df_index
        self.rf = 0.03
        self.m = 0.9
        self.account = BaseAccount(c.Util.BILLION / 10,rf=self.rf)
        self.unit = 50
        self.min_holding = 6 # 50ETF与IH到期日相差5天
        self.nbr_maturity = 0
        self.rank = 3
        self.slippage = 0
        self.aggregate_costs = 0.5/100.0
        self.cd_price = c.CdTradePrice.CLOSE
        self.df_arbitrage_window = pd.DataFrame()

    def init(self):
        self.underlying = None
        self.futureset = None
        self.baseindex = None
        self.optionset = BaseOptionSet(self.df_option)
        self.optionset.init()
        if self.name_code == c.Util.STR_50ETF:
            if self.df_etf is not None:
                self.underlying = BaseInstrument(self.df_etf) # 50ETF
                self.underlying.init()
            if self.df_future_all is not None:
                self.futureset = BaseFutureSet(self.df_future_all) # IH
                self.futureset.init()
                self.future_unit_ratio = 1/1000.0
            if self.df_index is not None:
                self.baseindex = BaseInstrument(self.df_index) # SH50
                self.baseindex.init()
        else: # 商品期权
            if self.df_future_all is not None:
                self.futureset = BaseFutureSet(self.df_future_all) # IH
                self.futureset.init()
                self.future_unit_ratio = 1.0
            # self.optionset = BaseOptionSet(self.df_option)
            # self.optionset.init()

    def update_sythetics(self):
        if self.name_code == c.Util.STR_50ETF:
            dt_maturity = self.optionset.select_maturity_date(nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
            contract_month = self.optionset.get_dict_options_by_maturities()[dt_maturity][0].contract_month()

            self.t_quote = self.optionset.get_T_quotes(dt_maturity, self.cd_price)
            self.t_quote.loc[:, 'diff'] = abs(
                self.t_quote.loc[:, c.Util.AMT_APPLICABLE_STRIKE] - self.t_quote.loc[:, c.Util.AMT_UNDERLYING_CLOSE])
            self.t_quote.loc[:, 'rank'] = self.t_quote.index - self.t_quote['diff'].idxmin()
            discount = c.PricingUtil.get_discount(self.optionset.eval_date, dt_maturity, self.rf)
            self.t_quote.loc[:, 'sythetic_underlying'] = self.t_quote.loc[:, c.Util.AMT_CALL_QUOTE] \
                                                    - self.t_quote.loc[:,c.Util.AMT_PUT_QUOTE] \
                                                    + self.t_quote.loc[:,c.Util.AMT_APPLICABLE_STRIKE] * discount
            df_window = self.t_quote[(self.t_quote['rank']<=self.rank)&(self.t_quote['rank']>=-self.rank)] # 只考虑rank以内期权
            self.row_max_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmax()]
            self.row_min_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmin()]
            self.df_arbitrage_window.loc[self.optionset.eval_date,'50etf'] = self.underlying.mktprice_close()
            self.df_arbitrage_window.loc[self.optionset.eval_date,'sythetic_underlying_max'] = self.row_max_sythetic['sythetic_underlying']
            self.df_arbitrage_window.loc[self.optionset.eval_date,'sythetic_underlying_min'] = self.row_min_sythetic['sythetic_underlying']
            if self.futureset is not None:
                future = self.futureset.select_future_by_contract_month(contract_month)
                self.row_max_sythetic['future'] = future
                if future is None:
                    return
                self.basis_to_etf = future.mktprice_close() - self.underlying.mktprice_close()/self.future_unit_ratio
                self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_etf'] = self.basis_to_etf
                self.df_arbitrage_window.loc[self.optionset.eval_date, 'ih'] = future.mktprice_close()
                if self.baseindex is not None:
                    self.basis_to_index = future.mktprice_close() - self.baseindex.mktprice_close()
                    self.tracking_error = self.underlying.mktprice_close()/self.future_unit_ratio - self.baseindex.mktprice_close()
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] = self.basis_to_index
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'tracking_error'] = self.tracking_error
                    self.df_arbitrage_window.loc[self.optionset.eval_date, 'index_50'] = self.baseindex.mktprice_close()
        else:
            dt_maturity = self.optionset.select_maturity_date(nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
            contract_month = self.optionset.get_dict_options_by_maturities()[dt_maturity][0].contract_month()
            self.t_quote = self.optionset.get_T_quotes(dt_maturity, self.cd_price)
            self.t_quote.loc[:, 'diff'] = abs(
                self.t_quote.loc[:, c.Util.AMT_APPLICABLE_STRIKE] - self.t_quote.loc[:, c.Util.AMT_UNDERLYING_CLOSE])
            self.t_quote.loc[:, 'rank'] = self.t_quote.index - self.t_quote['diff'].idxmin()
            discount = c.PricingUtil.get_discount(self.optionset.eval_date, dt_maturity, self.rf)
            self.t_quote.loc[:, 'sythetic_underlying'] = self.t_quote.loc[:, c.Util.AMT_CALL_QUOTE] \
                                                    - self.t_quote.loc[:,c.Util.AMT_PUT_QUOTE] \
                                                    + self.t_quote.loc[:,c.Util.AMT_APPLICABLE_STRIKE] * discount
            df_window = self.t_quote[(self.t_quote['rank']<=self.rank)&(self.t_quote['rank']>=-self.rank)] # 只考虑rank以内期权
            self.row_max_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmax()]
            self.row_min_sythetic = df_window.loc[df_window['sythetic_underlying'].idxmin()]
            future = self.futureset.select_future_by_contract_month(contract_month)
            self.underlying = future
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'underlying'] = self.underlying.mktprice_close()
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'sythetic_underlying_max'] = self.row_max_sythetic[
                'sythetic_underlying']
            self.df_arbitrage_window.loc[self.optionset.eval_date, 'sythetic_underlying_min'] = self.row_min_sythetic[
                'sythetic_underlying']


    def open_signal(self,cd_strategy):
        if cd_strategy == 'box':
            if (self.row_max_sythetic['sythetic_underlying'] - self.row_min_sythetic['sythetic_underlying'])/self.underlying.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date','id_instrument','base_instrument','long_short'])
                df = self.short_sythetic(df)
                df = self.long_sythetic(df)
                return df
            else:
                return None
        elif cd_strategy == 'conversion': # Converion : Short Sythetic, Long ETF
            if (self.row_max_sythetic['sythetic_underlying'] - self.underlying.mktprice_close())/self.underlying.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date','id_instrument','base_instrument','long_short'])
                df = self.short_sythetic(df)
                df = self.long_etf(df)
                return df
            else:
                return None
        elif cd_strategy == 'conversion_ih': # Converion : Short Sythetic, Long IH # 主要布局IH负基差套利
            if self.optionset.eval_date.month ==5: return None #5月由于股票集中现金分红不做空Synthetic
            future = self.row_max_sythetic['future']
            if future is None: return None
            self.future = future
            if (self.row_max_sythetic['sythetic_underlying']/self.future_unit_ratio - future.mktprice_close()-
                    self.df_arbitrage_window.loc[self.optionset.eval_date,'tracking_error'])/future.mktprice_close() > self.aggregate_costs:
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.short_sythetic(df)
                df = self.long_ih(df,future)
                return df
            else:
                return None
        elif cd_strategy == 'ih_basis_arbitrage':
            future = self.row_max_sythetic['future']
            if future is None: return None
            self.future = future
            if self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] < -self.aggregate_costs:  # 期货贴水
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.short_sythetic(df)
                df = self.long_ih(df,future)
                return df
            else:
                return None
        elif cd_strategy == 'may_effect': # Reverse: Long Sythetic, Short IH # 5-9月分红期
            if self.optionset.eval_date.month ==5: #5月由于股票集中现金分红不做空Synthetic
                df = pd.DataFrame(columns=['dt_date', 'id_instrument', 'base_instrument', 'long_short'])
                df = self.long_sythetic(df)
                df = self.short_ih(df)
                return df
            else:
                return None

    def close_signal(self,cd_strategy,df_position):
        if cd_strategy == 'box':
            if self.reverse_call.maturitydt() == self.optionset.eval_date or self.conversion_call.maturitydt() == self.optionset.eval_date :
                return True
            discount_r = c.PricingUtil.get_discount(self.optionset.eval_date, self.reverse_put.maturitydt(), self.rf)
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            reverse_sythetic = self.reverse_call.mktprice_close()-self.reverse_put.mktprice_close()+self.reverse_put.applicable_strike()*discount_r # Longed
            conversion_sythetic = self.conversion_call.mktprice_close()-self.conversion_put.mktprice_close()+self.conversion_put.applicable_strike()*discount_c # shorted
            if conversion_sythetic <= reverse_sythetic:
                return True
            else:
                return False
        elif cd_strategy == 'conversion': # Short Sythetic, Long Underlying # 主要布局IH负基差套利
            if self.conversion_call.maturitydt() == self.optionset.eval_date:
                return True
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            conversion_sythetic = self.conversion_call.mktprice_close() - self.conversion_put.mktprice_close() + self.conversion_put.applicable_strike() * discount_c  # shorted
            if conversion_sythetic/self.future_unit_ratio <= self.underlying.mktprice_close():
                return True
            else:
                return False
        elif cd_strategy == 'conversion_ih': # Short Sythetic, Long IH # 主要布局IH负基差套利
            if self.conversion_call.maturitydt() == self.optionset.eval_date or self.future.maturitydt() == self.optionset.eval_date:
                return True
            discount_c = c.PricingUtil.get_discount(self.optionset.eval_date, self.conversion_put.maturitydt(), self.rf)
            conversion_sythetic = self.conversion_call.mktprice_close() - self.conversion_put.mktprice_close() + self.conversion_put.applicable_strike() * discount_c  # shorted
            if conversion_sythetic/self.future_unit_ratio <= self.future.mktprice_close():
                return True
            else:
                return False
        elif cd_strategy == 'ih_basis_arbitrage':
            if self.df_arbitrage_window.loc[self.optionset.eval_date, 'basis_to_index'] >= 0:
                return True
            else:
                return False
        elif cd_strategy == 'may_effect': # Reverse: Long Sythetic, Short IH # 5-9月分红期
            if self.optionset.eval_date.month !=5: #5月由于股票集中现金分红不做空Synthetic
                return True
            else:
                return False

    def open_excute(self,open_signal):
        if open_signal is None:
            return False
        else:
            fund_per_unit = open_signal['fund_requirement'].sum()
            unit = np.floor(self.account.cash*self.m/fund_per_unit)
            for (idx,row) in open_signal.iterrows():
                option = row['base_instrument']
                order = self.account.create_trade_order(option, row['long_short'], unit*row['unit_ratio'],
                                                        cd_trade_price=self.cd_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
            print(self.optionset.eval_date, ' open position')
            return True


    def close_excute(self):
        self.close_out()
        print(self.optionset.eval_date, ' close position')
        return True
        # else:
        #     for (idx,row) in close_signal.iterrows():
        #         option = row['base_instrument']
        #         order = self.account.create_trade_order(option, row['long_short'], row['unit'],
        #                                                 cd_trade_price=self.cd_price)
        #         record = option.execute_order(order, slippage=self.slippage)
        #         self.account.add_record(record, option)
        #     return True

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(execution_record, self.account.dict_holding[order.id_instrument])


    def short_sythetic(self,df):
        # Short Sythetic
        self.conversion_call = self.optionset.get_baseoption_by_id(self.row_max_sythetic[c.Util.ID_CALL])
        fund_requirement = self.conversion_call.get_fund_required(c.LongShort.SHORT)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'C_call',
                        'id_instrument': self.row_max_sythetic[c.Util.ID_CALL],
                        'base_instrument': self.conversion_call,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': self.conversion_call.mktprice_close() * self.conversion_call.multiplier(),
                        'unit_ratio' : 1},
                       ignore_index=True)
        self.conversion_put = self.optionset.get_baseoption_by_id(self.row_max_sythetic[c.Util.ID_PUT])
        fund_requirement = self.conversion_put.get_fund_required(c.LongShort.LONG)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'C_put',
                        'id_instrument': self.row_max_sythetic[c.Util.ID_PUT],
                        'base_instrument': self.conversion_put,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.conversion_put.mktprice_close() * self.conversion_put.multiplier(),
                        'unit_ratio' : 1},
                       ignore_index=True)
        return df

    def long_sythetic(self,df):
        # Reverse : Long Sythetic
        self.reverse_call = self.optionset.get_baseoption_by_id(self.row_min_sythetic[c.Util.ID_CALL])
        fund_requirement = self.reverse_call.get_fund_required(c.LongShort.LONG)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'R_call',
                        'id_instrument': self.row_min_sythetic[c.Util.ID_CALL],
                        'base_instrument': self.reverse_call,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.reverse_call.mktprice_close() * self.reverse_call.multiplier()},
                       ignore_index=True)
        self.reverse_put = self.optionset.get_baseoption_by_id(self.row_min_sythetic[c.Util.ID_PUT])
        fund_requirement = self.reverse_put.get_fund_required(c.LongShort.SHORT)
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'R_put',
                        'id_instrument': self.row_min_sythetic[c.Util.ID_PUT],
                        'base_instrument': self.reverse_put,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': self.reverse_put.mktprice_close() * self.reverse_put.multiplier()},
                       ignore_index=True)
        return df

    def long_etf(self,df):
        unit_ratio = self.conversion_put.multiplier()
        fund_requirement = self.conversion_put.multiplier() * self.underlying.mktprice_close()
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': self.underlying.id_instrument(),
                        'base_instrument': self.underlying,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.underlying.mktprice_close() * self.underlying.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df

    def long_ih(self,df,future):
        unit_ratio = self.conversion_put.multiplier()/future.multiplier()/1000.0
        fund_requirement = future.mktprice_close()*future.multiplier()*unit_ratio
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': future.id_instrument(),
                        'base_instrument': future,
                        'long_short': c.LongShort.LONG,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -future.mktprice_close() * future.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df

    def short_ih(self,df):
        unit_ratio = self.reverse_put.multiplier()/self.future.multiplier()/1000.0
        fund_requirement = self.future.mktprice_close()*self.future.multiplier()*unit_ratio
        df = df.append({'dt_date': self.optionset.eval_date,
                        'cd_posiiton': 'underlying',
                        'id_instrument': self.future.id_instrument(),
                        'base_instrument': self.future,
                        'long_short': c.LongShort.SHORT,
                        'fund_requirement': fund_requirement,
                        'cashflow_t0': -self.future.mktprice_close() * self.future.multiplier()*unit_ratio,
                        'unit_ratio' : unit_ratio},
                       ignore_index=True)
        return df


    def back_test(self, cd_strategy):
        # TODO: DIVIDEND
        empty_position = True
        df_position = None
        while self.optionset.has_next():
            # if self.optionset.eval_date == datetime.date(2015,5,18):
            #     print('')
            self.update_sythetics()
            if empty_position:
                df_position = self.open_signal(cd_strategy)
                empty_position = not self.open_excute(df_position)
            elif self.close_signal(cd_strategy,df_position):
                empty_position = self.close_excute()
            # if isinstance(self.underlying,BaseFutureCoutinuous):
            #     self.underlying.shift_contract_month(self.account,self.slippage)
            self.account.daily_accounting(self.optionset.eval_date)
            self.optionset.next()
            self.underlying.next()
            if self.futureset is not None: self.futureset.next()
            if self.baseindex is not None: self.baseindex.next()
            # print(self.optionset.eval_date)
        return self.account

    def back_test_comdty(self, cd_strategy):
        empty_position = True
        df_position = None
        while self.optionset.has_next():
            # if self.optionset.eval_date == datetime.date(2015,5,18):
            #     print('')
            self.update_sythetics()
            if empty_position:
                df_position = self.open_signal(cd_strategy)
                empty_position = not self.open_excute(df_position)
            elif self.close_signal(cd_strategy,df_position):
                empty_position = self.close_excute()
            # if isinstance(self.underlying,BaseFutureCoutinuous):
            #     self.underlying.shift_contract_month(self.account,self.slippage)
            self.account.daily_accounting(self.optionset.eval_date)
            self.optionset.next()
            self.futureset.next()
            # if self.baseindex is not None: self.baseindex.next()
            # print(self.optionset.eval_date)
        return self.account
# curve = optionset.get_implied_vol_curves(maturity)

# curve_htbr = optionset.get_implied_vol_curves_htbr(maturity)
curve_otm = optionset.get_otm_implied_vol_curve(maturity)
# curve_htbr[Util.PCT_IV_CALL_BY_HTBR] = curve_htbr[Util.PCT_IV_CALL_BY_HTBR].apply(lambda x: None if x<0.05 else x)
# curve_htbr[Util.PCT_IV_PUT_BY_HTBR] = curve_htbr[Util.PCT_IV_PUT_BY_HTBR].apply(lambda x: None if x<0.05 else x)
curve_otm[Util.PCT_IV_OTM_BY_HTBR] = curve_otm[Util.PCT_IV_OTM_BY_HTBR].apply(
    lambda x: None if x < 0.05 else x)

strikes = curve_otm[Util.AMT_APPLICABLE_STRIKE]
# pu.plot_line_chart(strikes,[list(curve[Util.PCT_IV_CALL]),list(curve[Util.PCT_IV_PUT])],['CALL IV','PUT iv'])
# pu.plot_line_chart(strikes,[list(curve_htbr[Util.PCT_IV_CALL_BY_HTBR]),list(curve_htbr[Util.PCT_IV_PUT_BY_HTBR])],['CALL IV adjusted','PUT IV adjusted'])
pu.plot_line_chart(strikes, [list(curve_otm[Util.PCT_IV_OTM_BY_HTBR])],
                   ['IV : ' + str(optionset.eval_date)])
ivs1 = list(curve_otm[Util.PCT_IV_OTM_BY_HTBR])
optionset.next()
maturity = optionset.select_maturity_date(nbr_maturity,
                                          min_holding=min_holding)
iv_htr = optionset.get_atm_iv_by_htbr(maturity)
iv_avg = get_atm_iv_average(optionset, maturity)

htbr = optionset.get_htb_rate(maturity)
print('iv_htr : ', iv_htr)
print('iv_avg : ', iv_avg)
print('htb rate : ', htbr)

# curve = optionset.get_implied_vol_curves(maturity)

# curve_htbr = optionset.get_implied_vol_curves_htbr(maturity)
curve_otm = optionset.get_otm_implied_vol_curve(maturity)
# curve_htbr[Util.PCT_IV_CALL_BY_HTBR] = curve_htbr[Util.PCT_IV_CALL_BY_HTBR].apply(lambda x: None if x<0.05 else x)
Example #7
0
def implied_vol_avg(df_metrics, df_res, dt_list_term_structure, name_code):
    if name_code == c.Util.STR_CU:
        m = 100
    else:
        m = 1
    optionset = BaseOptionSet(df_metrics, rf=0.03)
    optionset.init()
    list_res_iv = []
    iv_term_structure = []
    while optionset.current_index < optionset.nbr_index:
        dt_maturity = optionset.select_maturity_date(nbr_maturity=0,
                                                     min_holding=min_holding)
        list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=0, maturity=dt_maturity)
        atm_call = optionset.select_higher_volume(list_atm_call)
        atm_put = optionset.select_higher_volume(list_atm_put)
        iv_call = atm_call.get_implied_vol()
        iv_put = atm_put.get_implied_vol()
        iv = (iv_put + iv_call) / 2.0
        list_res_iv.append({'date': optionset.eval_date, 'iv': iv})
        if optionset.eval_date in dt_list_term_structure:
            mdt_2 = optionset.select_maturity_date(nbr_maturity=1,
                                                   min_holding=0)
            list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(
                moneyness_rank=0, maturity=mdt_2)
            atm_call = optionset.select_higher_volume(list_atm_call)
            atm_put = optionset.select_higher_volume(list_atm_put)
            iv_call = atm_call.get_implied_vol()
            iv_put = atm_put.get_implied_vol()
            iv_2 = (iv_put + iv_call) / 2.0
            mdt_3 = optionset.select_maturity_date(nbr_maturity=2,
                                                   min_holding=0)
            if mdt_3 is None:
                iv_3 = None
            else:
                list_atm_call, list_atm_put = optionset.get_options_list_by_moneyness_mthd1(
                    moneyness_rank=0, maturity=mdt_3)
                atm_call = optionset.select_higher_volume(list_atm_call)
                atm_put = optionset.select_higher_volume(list_atm_put)
                iv_call = atm_call.get_implied_vol()
                iv_put = atm_put.get_implied_vol()
                iv_3 = (iv_put + iv_call) / 2.0
            iv_term_structure.append({
                'date': optionset.eval_date,
                'iv1': iv,
                'iv2': iv_2,
                'iv3': iv_3
            })
        if not optionset.has_next(): break
        optionset.next()
    df_iv = pd.DataFrame(list_res_iv).sort_values(
        by='date', ascending=False).reset_index(drop=True)
    df_res.loc[:, 'N:date'] = df_iv['date']
    df_res.loc[:, 'O:iv'] = df_iv['iv'] * m
    df_res.loc[:, 'P'] = None
    df_res.loc[:, 'Q'] = None
    df_res.loc[:, 'R'] = None
    df_res.loc[:, 'S'] = None
    df_res.loc[:, 'T'] = None
    print(df_iv)
    df = pd.DataFrame(iv_term_structure)
    df.to_csv('../data/' + name_code + '_iv_term_structure.csv')
    return df_res
Example #8
0
class HedgeIndexByOptions(object):
    def __init__(self,
                 df_baseindex,
                 df_option_metrics,
                 df_c1=None,
                 df_all=None,
                 cd_direction_timing='ma',
                 cd_strategy='bull_spread',
                 cd_volatility='close_std',
                 cd_short_ma='ma_5',
                 cd_long_ma='ma_60',
                 cd_std='std_10'):
        self.min_holding = 20
        self.slippage = 0
        self.nbr_maturity = 0
        self.moneyness_rank = 0
        self.cd_trade_price = c.CdTradePrice.VOLUME_WEIGHTED
        # self.cd_trade_price = c.CdTradePrice.CLOSE
        if df_c1 is None:
            dt_start = max(df_option_metrics[c.Util.DT_DATE].values[0],
                           df_baseindex[c.Util.DT_DATE].values[0])
            self.end_date = min(df_option_metrics[c.Util.DT_DATE].values[-1],
                                df_baseindex[c.Util.DT_DATE].values[-1])
            df_metrics = df_option_metrics[
                df_option_metrics[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_baseindex = df_baseindex[
                df_baseindex[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            self.invst_portfolio = BaseInstrument(
                df_baseindex)  # e.g., top 50 low volatility index
            self.invst_portfolio.init()
        else:
            dt_start = max(df_option_metrics[c.Util.DT_DATE].values[0],
                           df_baseindex[c.Util.DT_DATE].values[0],
                           df_c1[c.Util.DT_DATE].values[0])
            self.end_date = min(df_option_metrics[c.Util.DT_DATE].values[-1],
                                df_baseindex[c.Util.DT_DATE].values[-1],
                                df_c1[c.Util.DT_DATE].values[-1])
            df_metrics = df_option_metrics[
                df_option_metrics[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_baseindex = df_baseindex[
                df_baseindex[c.Util.DT_DATE] >= dt_start].reset_index(
                    drop=True)
            df_c1 = df_c1[df_c1[c.Util.DT_DATE] >= dt_start].reset_index(
                drop=True)
            df_all = df_all[df_all[c.Util.DT_DATE] >= dt_start].reset_index(
                drop=True)
            self.invst_portfolio = BaseFutureCoutinuous(
                df_c1, df_futures_all_daily=df_all
            )  # e.g., top 50 low volatility index
            self.invst_portfolio.init()
        self.optionset = BaseOptionSet(df_metrics)
        self.index = BaseInstrument(df_baseindex)
        self.optionset.init()
        self.index.init()
        self.account = BaseAccount(init_fund=c.Util.BILLION,
                                   leverage=1.0,
                                   rf=0.03)
        self.prepare_timing(df_baseindex)
        self.cd_direction_timing = cd_direction_timing
        self.cd_strategy = cd_strategy
        self.cd_volatility = cd_volatility
        self.cd_short_ma = cd_short_ma
        self.cd_long_ma = cd_long_ma
        self.cd_std = cd_std
        self.dict_strategy = {}
        self.nbr_timing = 0
        self.nbr_stop_loss = 0
        self.nvp_adjustment = 0
        self.sl_npv_high_point = 1.0
        self.strategy_pause = False

    def prepare_timing(self, df_index):
        df_index['ma_3'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=3).shift()
        df_index['ma_5'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=5).shift()
        df_index['ma_10'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=10).shift()
        df_index['ma_15'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=15).shift()
        df_index['ma_20'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=20).shift()
        df_index['ma_30'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=30).shift()
        df_index['ma_40'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=40).shift()
        df_index['ma_50'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=50).shift()
        df_index['ma_60'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=60).shift()
        df_index['ma_120'] = c.Statistics.moving_average(
            df_index[c.Util.AMT_CLOSE], n=120).shift()
        df_index['std_5'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=5).shift()
        df_index['std_10'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=10).shift()
        df_index['std_15'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=15).shift()
        df_index['std_20'] = c.Statistics.standard_deviation(
            df_index[c.Util.AMT_CLOSE], n=20).shift()
        df_index['ma_3-20'] = df_index['ma_3'] - df_index['ma_20']
        self.df_timing = df_index.set_index(c.Util.DT_DATE)

    def open_signal(self):
        if self.cd_direction_timing == 'ma':
            return self.open_position_ma()

    def close_signal(self):
        if self.cd_direction_timing == 'ma':
            return self.close_position_ma()

    def stop_loss_beg(self, drawdown, P_mdd):
        if drawdown.loc[self.optionset.eval_date, c.Util.DRAWDOWN] <= P_mdd:
            return True

    def stop_loss_end(self, drawdown, P_mdd):
        if drawdown.loc[
                self.optionset.eval_date,
                c.Util.PORTFOLIO_NPV] >= self.account.account[
                    c.Util.PORTFOLIO_NPV].values[-1] + self.nvp_adjustment:
            self.nvp_adjustment = drawdown.loc[
                self.optionset.eval_date,
                c.Util.PORTFOLIO_NPV] - self.account.account[
                    c.Util.PORTFOLIO_NPV].values[-1]
            self.nbr_stop_loss += 1
            print(self.optionset.eval_date, ' stop loss end ')
            print(self.nvp_adjustment,
                  self.account.account[c.Util.PORTFOLIO_NPV].values[-1],
                  drawdown.loc[self.optionset.eval_date, c.Util.PORTFOLIO_NPV])
            return True

    def strategy(self, cd_price=c.CdPriceType.OPEN):
        if self.cd_strategy == 'bull_spread':
            if self.cd_volatility == 'close_std':
                dt_date = self.optionset.eval_date
                std_close = self.df_timing.loc[dt_date, self.cd_std]
                k_short = self.index.mktprice_open() - std_close
                put_long, put_short = self.bull_spread(k_short, cd_price)
                return {
                    c.LongShort.SHORT: put_short,
                    c.LongShort.LONG: put_long
                }

    def shift(self):
        if self.cd_strategy == 'bull_spread':
            return self.shift_bull_spread()

    def open_position_ma(self):
        dt_date = self.optionset.eval_date
        if dt_date not in self.df_timing.index:
            return False
        ma_5 = self.df_timing.loc[dt_date, self.cd_short_ma]
        ma_60 = self.df_timing.loc[dt_date, self.cd_long_ma]
        if ma_5 < ma_60:
            return True
        else:
            return False

    def close_position_ma(self):
        dt_date = self.optionset.eval_date
        dt_maturity = None
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption) and option is not None:
                dt_maturity = option.maturitydt()
                break
        if dt_maturity is not None and (dt_maturity - dt_date).days <= 5:
            return True
        ma_5 = self.df_timing.loc[dt_date, self.cd_short_ma]
        ma_60 = self.df_timing.loc[dt_date, self.cd_long_ma]
        if ma_5 >= ma_60:
            print(self.optionset.eval_date)
            self.nbr_timing += 1
            return True
        else:
            return False

    def bull_spread(self, k_short, cd_price=c.CdPriceType.OPEN):
        maturity = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        xx, list_put0 = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity,
            cd_price=cd_price)
        put_long = self.optionset.select_higher_volume(list_put0)
        # if put_long is None:
        #     xxx, list_put0 = optionset.get_options_list_by_moneyness_mthd1(moneyness_rank=0,
        #                                                                   maturity=maturity,
        #                                                                   cd_price=c.CdPriceType.OPEN)
        #     put_long = optionset.select_higher_volume(list_put0)
        put_short = self.optionset.select_higher_volume(
            self.optionset.get_option_closest_strike(c.OptionType.PUT, k_short,
                                                     maturity))
        if put_short is not None:
            if put_short.strike() >= (k_short + put_long.strike()) / 2.0:
                put_short = None
            elif put_short.id_instrument() == put_long.id_instrument():
                xx, list_put1 = self.optionset.get_options_list_by_moneyness_mthd1(
                    moneyness_rank=-1, maturity=maturity, cd_price=cd_price)
                put_short = self.optionset.select_higher_volume(list_put1)
                # put_short = None
        return put_long, put_short

    def shift_bull_spread(self):
        option_short = self.dict_strategy[c.LongShort.SHORT]
        option_long = self.dict_strategy[c.LongShort.LONG]
        if option_short is None:
            return self.strategy()
        else:
            if self.index.mktprice_last_close() <= (option_long.strike() +
                                                    option_short.strike()) / 2:
                return self.strategy()
            else:
                return None

    def excute(self, dict_strategy, cd_trade_price=None):
        if cd_trade_price is None:
            cd_trade_price = self.cd_trade_price
        if dict_strategy is None: return
        for long_short in dict_strategy.keys():
            option = dict_strategy[long_short]
            if option is None:
                continue
            elif long_short in self.dict_strategy.keys() and self.dict_strategy[long_short] is not None \
                    and option.id_instrument() == self.dict_strategy[long_short].id_instrument():
                continue
            unit = self.unit_index / option.multiplier()
            order = self.account.create_trade_order(
                option, long_short, unit, cd_trade_price=cd_trade_price)
            record = option.execute_order(order, slippage=self.slippage)
            self.account.add_record(record, option)
        self.dict_strategy = dict_strategy

    def close_options(self):
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption):
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_trade_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
        self.dict_strategy = {}

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(
            cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(
                execution_record,
                self.account.dict_holding[order.id_instrument])

    def back_test(self):
        self.unit_index = np.floor(self.account.cash /
                                   self.index.mktprice_close() /
                                   self.index.multiplier())

        unit_portfolio = np.floor(self.account.cash /
                                  self.invst_portfolio.mktprice_close() /
                                  self.invst_portfolio.multiplier())
        order_index = self.account.create_trade_order(
            self.invst_portfolio,
            c.LongShort.LONG,
            unit_portfolio,
            cd_trade_price=c.CdTradePrice.CLOSE)
        record_index = self.invst_portfolio.execute_order(
            order_index, slippage=self.slippage)
        self.account.add_record(record_index, self.invst_portfolio)
        empty_position = True
        init_index = self.index.mktprice_close()
        init_portfolio = self.invst_portfolio.mktprice_close()

        base_npv = []
        index_npv = []
        while self.optionset.eval_date <= self.end_date:
            # if self.optionset.eval_date == datetime.date(2016,5,20):
            #     print('')
            # print(self.optionset.eval_date)
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                close_out_orders = self.account.creat_close_out_order()
                for order in close_out_orders:
                    execution_record = self.account.dict_holding[order.id_instrument] \
                        .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
                    self.account.add_record(
                        execution_record,
                        self.account.dict_holding[order.id_instrument])
                self.account.daily_accounting(self.optionset.eval_date)
                base_npv.append(self.invst_portfolio.mktprice_close() /
                                init_portfolio)
                index_npv.append(self.index.mktprice_close() / init_index)
                print(self.optionset.eval_date, ' close out ')
                break

            if not empty_position:
                if self.close_signal():
                    self.close_options()
                    empty_position = True
                else:
                    strategy = self.shift()
                    if strategy is not None:
                        self.close_options()
                        self.excute(strategy)

            if empty_position and self.open_signal():
                self.excute(self.strategy())
                empty_position = False

            #TODO:移仓换月
            if isinstance(self.invst_portfolio, BaseFutureCoutinuous):
                self.invst_portfolio.shift_contract_month(
                    self.account, self.slippage)

            self.account.daily_accounting(self.optionset.eval_date)
            self.account.account.loc[self.optionset.eval_date,
                                     'unit_index'] = self.unit_index
            self.account.account.loc[
                self.optionset.eval_date,
                'close_index'] = self.index.mktprice_close()
            # print(self.optionset.eval_date,estimated_npv1,estimated_npv2,estimated_npv3,self.account.account.loc[self.optionset.eval_date,c.Util.PORTFOLIO_NPV])
            base_npv.append(self.invst_portfolio.mktprice_close() /
                            init_portfolio)
            index_npv.append(self.index.mktprice_close() / init_index)
            # print(self.invst_portfolio.eval_date, self.account.account.loc[self.optionset.eval_date,c.Util.PORTFOLIO_NPV],
            #       self.invst_portfolio.mktprice_close() / init_index)
            if not self.optionset.has_next(): break
            self.optionset.next()
            self.index.next()
            self.invst_portfolio.next()
        self.account.account['base_npv'] = base_npv
        self.account.account['index_npv'] = index_npv
        # active_npv = self.df_index[self.df_index[c.Util.DT_DATE]<=self.optionset.eval_date].reset_index(drop=True)
        # self.account.account['active_npv'] = active_npv[c.Util.AMT_CLOSE]
        self.account.nbr_timing = self.nbr_timing
        # print(self.account.account.loc[self.invst_portfolio.eval_date,c.Util.PORTFOLIO_NPV])
        return self.account

    def back_test_with_stop_loss(self, drawdown, P_mdd):
        self.P_mdd = P_mdd
        self.unit_index = np.floor(self.account.cash /
                                   self.index.mktprice_close() /
                                   self.index.multiplier())

        order_index = self.account.create_trade_order(
            self.index,
            c.LongShort.LONG,
            self.unit_index,
            cd_trade_price=c.CdTradePrice.CLOSE)
        record_index = self.index.execute_order(order_index,
                                                slippage=self.slippage)
        self.account.add_record(record_index, self.index)
        empty_position = True
        init_index = self.index.mktprice_close()
        base_npv = []
        stop_loss_paused = False
        while self.optionset.eval_date <= self.end_date:
            # if self.optionset.eval_date == datetime.date(2016,5,20):
            #     print('')
            # print(self.optionset.eval_date)
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                close_out_orders = self.account.creat_close_out_order()
                for order in close_out_orders:
                    execution_record = self.account.dict_holding[order.id_instrument] \
                        .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
                    self.account.add_record(
                        execution_record,
                        self.account.dict_holding[order.id_instrument])
                self.account.daily_accounting(self.optionset.eval_date)
                base_npv.append(self.index.mktprice_close() / init_index)
                print(self.optionset.eval_date, ' close out ')
                break

            # Option Hedge
            if not stop_loss_paused:
                if not empty_position:
                    if self.close_signal():
                        self.close_all_options()
                        empty_position = True
                    else:
                        strategy = self.shift()
                        if strategy is not None:
                            self.close_all_options()
                            self.excute(strategy)

                if empty_position and self.open_signal():
                    self.excute(self.strategy())
                    empty_position = False

            estimated_npv = self.account.estimate_npv()
            self.sl_npv_high_point = max(self.sl_npv_high_point, estimated_npv)
            # if self.account.account.loc[self.optionset.eval_date, c.Util.DRAWDOWN]>= 0.0:
            #     self.P_mdd = P_mdd
            # 止损控制
            if (estimated_npv - self.sl_npv_high_point
                ) / self.sl_npv_high_point < self.P_mdd:
                self.close_out()
                self.sl_npv_high_point = estimated_npv
                self.strategy_npv_paused = drawdown.loc[
                    self.optionset.eval_date, c.Util.PORTFOLIO_NPV]
                print(self.optionset.eval_date, 'stop loss',
                      self.sl_npv_high_point, self.P_mdd)
                self.account.daily_accounting(self.optionset.eval_date, False)
                base_npv.append(self.index.mktprice_close() / init_index)
                if not self.optionset.has_next(): break
                self.optionset.next()
                self.index.next()
                stop_loss_paused = True
                empty_position = True
                # self.P_mdd = -0.02
                continue

            if stop_loss_paused:
                strategy_npv = drawdown.loc[self.optionset.eval_date,
                                            c.Util.PORTFOLIO_NPV]
                # 止损后空仓
                # if strategy_npv <= self.strategy_npv_paused:
                if (strategy_npv - self.strategy_npv_paused
                    ) / self.strategy_npv_paused < 0.01:
                    self.account.daily_accounting(self.optionset.eval_date)
                    base_npv.append(self.index.mktprice_close() / init_index)
                    if not self.optionset.has_next(): break
                    self.optionset.next()
                    self.index.next()
                    continue
                # 止损信号解除
                else:
                    order_index = self.account.create_trade_order(
                        self.index,
                        c.LongShort.LONG,
                        self.unit_index,
                        cd_trade_price=c.CdTradePrice.CLOSE)
                    record_index = self.index.execute_order(
                        order_index, slippage=self.slippage)
                    self.account.add_record(record_index, self.index)
                    stop_loss_paused = False
                    self.nbr_stop_loss += 1
                    print(self.optionset.eval_date, 'stop loss end')
                    # if empty_position and self.open_signal():
                    #     self.excute(self.strategy(cd_price=c.CdPriceType.CLOSE),cd_trade_price=c.CdTradePrice.CLOSE)
                    #     empty_position = False

            # 每日结算
            self.account.daily_accounting(self.optionset.eval_date)

            base_npv.append(self.index.mktprice_close() / init_index)
            if not self.optionset.has_next(): break
            self.optionset.next()
            self.index.next()
        self.account.account['base_npv'] = base_npv
        # active_npv = self.df_index[self.df_index[c.Util.DT_DATE] <= self.optionset.eval_date].reset_index(drop=True)
        # self.account.account['active_npv'] = active_npv[c.Util.AMT_CLOSE]
        self.account.nbr_timing = self.nbr_timing
        self.account.nbr_stop_loss = self.nbr_stop_loss
        return self.account
Example #9
0
class NakedShort(object):
    def __init__(self,
                 df_metrics,
                 df_baseindex=None,
                 cd_strategy='naked_put',
                 id_baseindex=c.Util.STR_INDEX_300SH,
                 cd_marutity_days=3):
        self.start_date = df_metrics[c.Util.DT_DATE].values[0]
        self.end_date = df_metrics[c.Util.DT_DATE].values[-1]
        if df_baseindex is None:
            df_baseindex = get_data.get_index_mktdata(self.start_date,
                                                      self.end_date,
                                                      c.Util.STR_INDEX_300SH)
        self.min_holding = 20
        self.init_fund = c.Util.BILLION
        self.slippage = 0
        self.m = 1  # 期权notional倍数
        if cd_strategy == 'short_straddle':
            self.m = 0.5
        self.moneyness_rank = -4
        self.nbr_maturity = 0
        self.cd_trade_price = c.CdTradePrice.VOLUME_WEIGHTED
        self.account = BaseAccount(init_fund=c.Util.BILLION,
                                   leverage=1.0,
                                   rf=0.03)
        self.optionset = BaseOptionSet(df_metrics)
        self.optionset.init()
        self.index = BaseInstrument(df_baseindex)
        self.index.init()
        self.cd_strategy = cd_strategy
        self.cd_maturity_days = cd_marutity_days
        self.init_index = self.index.mktprice_close()
        # w.start()
        # TODO: 统一 check dt_first; 将base_npv写入accout

    def close_signal(self):
        dt_maturity = None
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption) and option is not None:
                dt_maturity = option.maturitydt()
                break
        # t = w.tdayscount(self.optionset.eval_date.strftime("%Y-%m-%d"), dt_maturity.strftime("%Y-%m-%d"), "").Data[0][0]
        t = c.QuantlibUtil.get_business_between(self.optionset.eval_date,
                                                dt_maturity)
        if t <= self.cd_maturity_days:
            # if (dt_maturity - self.optionset.eval_date).days <= self.cd_maturity_days:
            return True
        else:
            return False

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(
            cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(
                execution_record,
                self.account.dict_holding[order.id_instrument])

    def close_all_options(self):
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption):
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_trade_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)

    def strategy(self):
        if self.cd_strategy == 'short_straddle':
            return self.short_straddle()
        elif self.cd_strategy == 'short_put':
            return self.short_put()
        elif self.cd_strategy == 'short_call':
            return self.short_call()

    def short_straddle(self):
        maturity1 = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        list_atm_call, list_atm_put = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity1,
            cd_price=c.CdPriceType.OPEN)
        atm_call = self.optionset.select_higher_volume(list_atm_call)
        atm_put = self.optionset.select_higher_volume(list_atm_put)
        if atm_call is None or atm_put is None:
            return
        else:
            return [atm_call, atm_put]

    def short_put(self):
        maturity1 = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        list_atm_call, list_atm_put = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity1,
            cd_price=c.CdPriceType.OPEN)
        atm_put = self.optionset.select_higher_volume(list_atm_put)
        if atm_put is None:
            return
        else:
            return [atm_put]

    def short_call(self):
        maturity1 = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        list_atm_call, list_atm_put = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity1,
            cd_price=c.CdPriceType.OPEN)
        atm_call = self.optionset.select_higher_volume(list_atm_call)
        if atm_call is None:
            return
        else:
            return [atm_call]

    def excute(self, strategy):
        if strategy is None:
            return True
        else:
            pv = self.account.portfolio_total_value
            for option in strategy:
                unit = np.floor(
                    np.floor(pv / option.strike()) /
                    option.multiplier()) * self.m
                order = self.account.create_trade_order(
                    option,
                    c.LongShort.SHORT,
                    unit,
                    cd_trade_price=self.cd_trade_price)
                record = option.execute_order(order, slippage=self.slippage)
                self.account.add_record(record, option)
            return False

    def back_test(self):

        empty_position = True
        index_npv = []
        while self.optionset.eval_date <= self.end_date:

            # print(optionset.eval_date)
            # if self.account.cash <= 0: break
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                self.close_out()
                self.account.daily_accounting(self.optionset.eval_date)
                index_npv.append(self.index.mktprice_close() / self.init_index)
                break

            # 平仓
            if not empty_position and self.close_signal():
                self.close_all_options()
                empty_position = True

            # 开仓
            if empty_position:
                empty_position = self.excute(self.strategy())

            self.account.daily_accounting(self.optionset.eval_date)
            index_npv.append(self.index.mktprice_close() / self.init_index)
            # print(self.optionset.eval_date,self.account.account.loc[self.optionset.eval_date,c.Util.PORTFOLIO_NPV])
            if not self.optionset.has_next(): break
            self.optionset.next()
            self.index.next()
        self.account.account['index_npv'] = index_npv
Example #10
0
class VolTrading(object):
    def __init__(self, start_date, end_date, df_metrics, df_vol,
                 df_future_c1_daily, df_futures_all_daily):
        self.min_holding = 20
        self.slippage = 0
        self.nbr_maturity = 0
        self.moneyness_rank = 0
        self.m_notional = 1
        self.rf = 0.03
        self.n_premium_std = 90  #用于计算权利金溢价1倍标准差的数据期限
        self.n_hv = 20  # 用与期权期限相匹配的历史波动率期限
        self.n_close_by_maturity = 5
        self.min_premium = 2.0 / 100.0  # 对冲成本对应的开平仓最低隐含波动率溢价
        self.n_llt = 5
        self.cd_option_price = c.CdTradePrice.CLOSE
        self.cd_future_price = c.CdTradePrice.CLOSE
        self.cd_price = c.CdPriceType.CLOSE
        self.start_date = start_date
        self.end_date = end_date
        self.df_metrics = df_metrics
        self.df_vol = df_vol
        self.df_f_c1 = df_future_c1_daily
        self.df_f_all = df_futures_all_daily

    def init(self):
        df_future_histvol = self.df_f_c1.copy()
        df_future_histvol['amt_hv'] = histvol.hist_vol(
            df_future_histvol[c.Util.AMT_CLOSE], n=self.n_hv)
        self.dt_start = max(self.df_f_c1[c.Util.DT_DATE].values[0],
                            self.df_metrics[c.Util.DT_DATE].values[0])
        self.end_date = min(self.df_f_c1[c.Util.DT_DATE].values[-1],
                            self.df_metrics[c.Util.DT_DATE].values[-1])
        self.df_metrics = self.df_metrics[
            self.df_metrics[c.Util.DT_DATE] >= self.dt_start].reset_index(
                drop=True)
        self.df_f_c1 = self.df_f_c1[
            self.df_f_c1[c.Util.DT_DATE] >= self.dt_start].reset_index(
                drop=True)
        self.df_f_all = self.df_f_all[
            self.df_f_all[c.Util.DT_DATE] >= self.dt_start].reset_index(
                drop=True)
        self.df_vol = pd.merge(self.df_vol,
                               df_future_histvol[[c.Util.DT_DATE, 'amt_hv']],
                               on=c.Util.DT_DATE).set_index(c.Util.DT_DATE)
        self.optionset = BaseOptionSet(self.df_metrics)
        self.optionset.init()
        self.hedging = SytheticOption(self.df_f_c1,
                                      rf=self.rf,
                                      df_futures_all_daily=self.df_f_all)
        self.hedging.init()
        self.hedging.amt_option = 1 / 1000  # 50ETF与IH点数之比
        self.account = BaseAccount(init_fund=c.Util.BILLION, rf=self.rf)
        self.prepare_timing()

    def prepare_timing(self):
        self.timing_hviv()
        self.timing_llt()

    def timing_hviv(self):
        self.df_vol['amt_premium'] = self.df_vol[
            c.Util.PCT_IMPLIED_VOL] - self.df_vol['amt_hv']
        self.df_vol['amt_1std'] = c.Statistics.standard_deviation(
            self.df_vol['amt_premium'], n=self.n_premium_std)
        self.df_vol['amt_2std'] = 2 * c.Statistics.standard_deviation(
            self.df_vol['amt_premium'], n=self.n_premium_std)
        self.df_vol['percentile_95'] = c.Statistics.percentile(
            self.df_vol[c.Util.PCT_IMPLIED_VOL], n=252, percent=0.95)

    def timing_llt(self):
        self.df_vol['LLT_' + str(self.n_llt)] = LLT(
            self.df_vol[c.Util.PCT_IMPLIED_VOL], self.n_llt)
        self.df_vol['LLT_signal_' +
                    str(self.n_llt)] = self.df_vol['LLT_' +
                                                   str(self.n_llt)].diff()

    def open_signal(self):
        pass

    def close_signal(self):
        pass

    def open_signal_llt(self):
        dt_date = self.optionset.eval_date
        if dt_date not in self.df_vol.index:
            return False
        if self.df_vol.loc[dt_date, 'LLT_signal_5'] < 0:  # 隐含波动率处于下行区间
            return True
        else:
            return False

    def close_signal_llt(self):
        dt_date = self.optionset.eval_date
        if dt_date not in self.df_vol.index:
            return False
        if self.df_vol.loc[dt_date, 'LLT_signal_5'] > 0:  # 隐含波动率处于上行区间
            return True
        else:
            return False

    def open_signal_ivhv(self):
        dt_date = self.optionset.eval_date
        if dt_date not in self.df_vol.index:
            return False
        amt_premium = self.df_vol.loc[dt_date, 'amt_premium']
        amt_1std = self.df_vol.loc[dt_date, 'amt_1std']
        if amt_premium > amt_1std and amt_premium > self.min_premium:  # 隐含波动率相比历史波动率具有一定溢价
            return True
        else:
            return False

    def close_signal_ivhv(self):
        dt_date = self.optionset.eval_date
        amt_premium = self.df_vol.loc[dt_date, 'amt_premium']
        if amt_premium <= self.min_premium:
            return True
        else:
            return False

    def close_signal_maturity(self):
        dt_maturity = None
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption) and option is not None:
                dt_maturity = option.maturitydt()
                break
        if (dt_maturity -
                self.optionset.eval_date).days <= self.n_close_by_maturity:
            return True
        else:
            return False

    def strategy(self):
        return self.short_straddle()

    def short_straddle(self):
        maturity = self.optionset.select_maturity_date(
            nbr_maturity=self.nbr_maturity, min_holding=self.min_holding)
        list_atm_call, list_atm_put = self.optionset.get_options_list_by_moneyness_mthd1(
            moneyness_rank=self.moneyness_rank,
            maturity=maturity,
            cd_price=self.cd_price)
        atm_call = self.optionset.select_higher_volume(list_atm_call)
        atm_put = self.optionset.select_higher_volume(list_atm_put)
        if atm_call is None or atm_put is None:
            return
        else:
            return [atm_call, atm_put]

    def excute(self, strategy):
        if strategy is None:
            return False
        else:
            pv = self.account.portfolio_total_value
            self.option_holding = {}
            for option in strategy:
                unit = np.floor(
                    np.floor(pv / option.strike()) /
                    option.multiplier()) * self.m_notional
                order = self.account.create_trade_order(
                    option,
                    c.LongShort.SHORT,
                    unit,
                    cd_trade_price=self.cd_option_price)
                record = option.execute_order(order,
                                              slippage_rate=self.slippage)
                self.account.add_record(record, option)
                self.option_holding.update({option: unit})
            return True

    def close_out(self):
        close_out_orders = self.account.creat_close_out_order(
            cd_trade_price=c.CdTradePrice.CLOSE)
        for order in close_out_orders:
            execution_record = self.account.dict_holding[order.id_instrument] \
                .execute_order(order, slippage_rate=self.slippage, execute_type=c.ExecuteType.EXECUTE_ALL_UNITS)
            self.account.add_record(
                execution_record,
                self.account.dict_holding[order.id_instrument])

    def close_out_1(self):
        for option in self.account.dict_holding.values():
            if isinstance(option, BaseOption):
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_option_price)
            else:
                order = self.account.create_close_order(
                    option, cd_trade_price=self.cd_future_price)
            record = option.execute_order(order, slippage_rate=self.slippage)
            self.account.add_record(record, option)

    # TODO: Use Delta Bound Model
    def delta_hedge(self):
        option1 = list(self.option_holding.keys())[0]
        iv_htbr = self.optionset.get_iv_by_otm_iv_curve(
            dt_maturity=option1.maturitydt(),
            strike=option1.applicable_strike())
        options_delta = 0
        for option in self.option_holding.keys():
            unit = self.option_holding[option]
            options_delta += unit * option.get_delta(
                iv_htbr) * option.multiplier()
        hedge_unit = self.hedging.get_hedge_rebalancing_unit(
            options_delta, c.BuyWrite.WRITE)
        self.hedging.synthetic_unit += -hedge_unit
        if hedge_unit > 0:
            long_short = c.LongShort.LONG
        else:
            long_short = c.LongShort.SHORT
        order_u = self.account.create_trade_order(
            self.hedging,
            long_short,
            hedge_unit,
            cd_trade_price=self.cd_future_price)
        record_u = self.hedging.execute_order(order_u,
                                              slippage_rate=self.slippage)
        self.account.add_record(record_u, self.hedging)
        # print('')

    def back_test(self):

        empty_position = True
        while self.optionset.eval_date <= self.end_date:
            # if self.optionset.eval_date == datetime.date(2017, 1, 19):
            #     print('')
            if self.optionset.eval_date >= self.end_date:  # Final close out all.
                self.close_out()
                self.account.daily_accounting(self.optionset.eval_date)
                print(self.optionset.eval_date, ' close out ')
                print(
                    self.optionset.eval_date, self.hedging.eval_date,
                    self.account.account.loc[self.optionset.eval_date,
                                             c.Util.PORTFOLIO_NPV],
                    int(self.account.cash))
                break
            # 标的移仓换月
            if self.hedging.close_old_contract_month(
                    self.account, self.slippage,
                    cd_price=self.cd_future_price):
                self.hedging.synthetic_unit = 0
            # 平仓
            if not empty_position:
                if self.close_signal():
                    self.close_out_1()
                    self.hedging.synthetic_unit = 0
                    empty_position = True
            # 开仓
            if empty_position and self.open_signal():
                s = self.strategy()
                empty_position = not self.excute(s)
            # Delta hedge
            if not empty_position:
                self.delta_hedge()
            self.account.daily_accounting(self.optionset.eval_date)
            if not self.optionset.has_next():
                break
            self.optionset.next()
            self.hedging.next()
        return self.account