def __init__(self, units, num_head, activation=None, use_bias=False, attention_dropout=0.0, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(RelativePartialMultiHeadSelfAttention, self).__init__(**kwargs) self.supports_masking = True self.units = units self.num_head = num_head self.units_head = units // num_head self.activation = activation self.activation = activations.get(activation) self.use_bias = use_bias self.attention_dropout = attention_dropout self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.kernel, self.bias = None, None self.att_drop_layer = None
def __init__(self, units, bias_initializer='zeros', bias_regularizer=None, bias_constraint=None, **kwargs): super(RelativeBias, self).__init__(**kwargs) self.supports_masking = True self.units = units self.bias_initializer = initializers.get(bias_initializer) self.bias_regularizer = regularizers.get(bias_regularizer) self.bias_constraint = constraints.get(bias_constraint) self.bias_context, self.bias_relative = None, None
def __init__(self, units, initializer='uniform', regularizer=None, constraint=None, **kwargs): super(MaskEmbedding, self).__init__(**kwargs) self.supports_masking = True self.units = units self.initializer = initializers.get(initializer) self.regularizer = regularizers.get(regularizer) self.constraint = constraints.get(constraint) self.embeddings = None