Example #1
0
def test_segment_reduce(reducer):
    ctx = F.ctx()
    value = F.tensor(np.random.rand(10, 5))
    v1 = F.attach_grad(F.clone(value))
    v2 = F.attach_grad(F.clone(value))
    seglen = F.tensor([2, 3, 0, 4, 1, 0, 0])
    u = F.copy_to(F.arange(0, F.shape(value)[0], F.int32), ctx)
    v = F.repeat(F.copy_to(F.arange(0, len(seglen), F.int32), ctx),
                 seglen,
                 dim=0)

    num_nodes = {'_U': len(u), '_V': len(seglen)}
    g = dgl.convert.heterograph({('_U', '_E', '_V'): (u, v)},
                                num_nodes_dict=num_nodes)
    with F.record_grad():
        rst1 = gspmm(g, 'copy_lhs', reducer, v1, None)
        if reducer in ['max', 'min']:
            rst1 = F.replace_inf_with_zero(rst1)
        F.backward(F.reduce_sum(rst1))
        grad1 = F.grad(v1)

    with F.record_grad():
        rst2 = segment_reduce(seglen, v2, reducer=reducer)
        F.backward(F.reduce_sum(rst2))
        assert F.allclose(rst1, rst2)
        print('forward passed')

        grad2 = F.grad(v2)
        assert F.allclose(grad1, grad2)
        print('backward passed')
Example #2
0
def test_spmm(idtype, g, shp, msg, reducer):
    g = g.astype(idtype).to(F.ctx())
    print(g)
    print(g.idtype)

    hu = F.tensor(np.random.rand(*((g.number_of_src_nodes(), ) + shp[0])) + 1)
    he = F.tensor(np.random.rand(*((g.number_of_edges(), ) + shp[1])) + 1)
    print('u shape: {}, e shape: {}'.format(F.shape(hu), F.shape(he)))

    g.srcdata['x'] = F.attach_grad(F.clone(hu))
    g.edata['w'] = F.attach_grad(F.clone(he))
    print('SpMM(message func: {}, reduce func: {})'.format(msg, reducer))

    u = F.attach_grad(F.clone(hu))
    e = F.attach_grad(F.clone(he))
    with F.record_grad():
        v = gspmm(g, msg, reducer, u, e)
        if reducer in ['max', 'min']:
            v = F.replace_inf_with_zero(v)
        if g.number_of_edges() > 0:
            F.backward(F.reduce_sum(v))
            if msg != 'copy_rhs':
                grad_u = F.grad(u)
            if msg != 'copy_lhs':
                grad_e = F.grad(e)

    with F.record_grad():
        g.update_all(udf_msg[msg], udf_reduce[reducer])
        if g.number_of_edges() > 0:
            v1 = g.dstdata['v']
            assert F.allclose(v, v1)
            print('forward passed')

            F.backward(F.reduce_sum(v1))
            if msg != 'copy_rhs':
                if reducer in ['min',
                               'max']:  # there might be some numerical errors
                    rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
                           F.reduce_sum(F.abs(grad_u))
                    assert F.as_scalar(rate) < 1e-2, rate
                else:
                    assert F.allclose(F.grad(g.srcdata['x']), grad_u)
            if msg != 'copy_lhs':
                if reducer in ['min', 'max']:
                    rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
                           F.reduce_sum(F.abs(grad_e))
                    assert F.as_scalar(rate) < 1e-2, rate
                else:
                    assert F.allclose(F.grad(g.edata['w']), grad_e)
            print('backward passed')

    g.srcdata.pop('x')
    g.edata.pop('w')
    if 'v' in g.dstdata: g.dstdata.pop('v')