def test_updates():
    """Ensure weight updates are applied with same actual learning rate
    (after applying eta_t) for every weight - and that update with eta_t=0
    does not change weights
    """
    def _make_model(opt, batch_shape):
        ipt = Input(batch_shape=batch_shape)
        x = Dense(batch_shape[-1])(ipt)
        out = Dense(batch_shape[-1])(x)
        model = Model(ipt, out)
        model.compile(opt, 'mse')
        return model

    batch_shape = (16, 10, 8)
    x = y = np.random.randn(*batch_shape)

    for Opt in (AdamW, NadamW, SGDW):
        # rerun several times to stress-test
        # nondeterministic device order of operations
        for j in range(5):
            opt = Opt(lr=1e-2, use_cosine_annealing=True, total_iterations=25)
            model = _make_model(opt, batch_shape)
            K.set_value(opt.eta_t, 0)
            # TF cannot guarantee that weights are updated before eta_t is;
            # this ensures t_cur forces eta_t to 0 regardless of update order
            K.set_value(opt.t_cur, opt.total_iterations - 2)

            W_pre = model.get_weights()
            model.train_on_batch(x, y)
            W_post = model.get_weights()

            for i, (w_pre, w_post) in enumerate(zip(W_pre, W_post)):
                absdiff = np.sum(np.abs(w_post - w_pre))
                assert absdiff < 1e-8, (
                    "absdiff = {:.4e} for weight idx = {}, {} optimizer".
                    format(absdiff, i, Opt.__name__))
            print("Nondeterministic-op stress test iter %s passed" % (j + 1))
        cprint("\n<< %s UPDATE TEST PASSED >>\n" % Opt.__name__, 'green')

    cprint("\n<< ALL UPDATES TESTS PASSED >>\n", 'green')
Example #2
0
def test_misc():  # test miscellaneous functionalities
    units = 6
    batch_shape = (8, 100, 2 * units)

    reset_seeds(reset_graph_with_backend=K)
    model = make_model(GRU,
                       batch_shape,
                       activation='relu',
                       recurrent_dropout=0.3,
                       IMPORTS=IMPORTS)
    x, y, sw = make_data(batch_shape, units)
    model.train_on_batch(x, y, sw)

    weights_norm(model, 'gru', omit_names='bias', verbose=1)
    weights_norm(model, ['gru', 1, (1, 1)], norm_fn=np.abs)
    stats = weights_norm(model, 'gru')
    weights_norm(model, 'gru', _dict=stats)

    grads = get_gradients(model, 1, x, y)
    get_gradients(model, 1, x, y, as_dict=True)
    get_gradients(model, ['gru', 1], x, y)
    get_outputs(model, ['gru', 1], x)

    features_1D(grads,
                subplot_samples=True,
                tight=True,
                borderwidth=2,
                share_xy=False)
    with tempdir() as dirpath:
        features_0D(grads[0], savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_1D(grads[0],
                    subplot_samples=True,
                    annotations=[1, 'pi'],
                    savepath=os.path.join(dirpath, 'img.png'))
    features_2D(grads.T, n_rows=1.5, tight=True, borderwidth=2)
    with tempdir() as dirpath:
        features_2D(grads.T[:, :, 0],
                    norm='auto',
                    savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist(grads,
                      show_borders=False,
                      borderwidth=1,
                      annotations=[0],
                      show_xy_ticks=[0, 0],
                      share_xy=(1, 1),
                      title="grads",
                      savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist_v2(list(grads[:, :4, :3]),
                         colnames=list('abcd'),
                         show_borders=False,
                         xlims=(-.01, .01),
                         ylim=100,
                         borderwidth=1,
                         show_xy_ticks=[0, 0],
                         side_annot='row',
                         share_xy=True,
                         title="Grads",
                         savepath=os.path.join(dirpath, 'img.png'))
    features_hist(grads, center_zero=True, xlims=(-1, 1), share_xy=0)
    features_hist_v2(list(grads[:, :4, :3]),
                     center_zero=True,
                     xlims=(-1, 1),
                     share_xy=(False, False))
    with tempdir() as dirpath:
        rnn_histogram(model,
                      1,
                      show_xy_ticks=[0, 0],
                      equate_axes=2,
                      savepath=os.path.join(dirpath, 'img.png'))
    rnn_histogram(model,
                  1,
                  equate_axes=False,
                  configs={
                      'tight': dict(left=0, right=1),
                      'plot': dict(color='red'),
                      'title': dict(fontsize=14),
                  })
    rnn_heatmap(model, 1, cmap=None, normalize=True, show_borders=False)
    rnn_heatmap(model, 1, cmap=None, norm='auto', absolute_value=True)
    rnn_heatmap(model, 1, norm=None)
    with tempdir() as dirpath:
        rnn_heatmap(model,
                    1,
                    norm=(-.004, .004),
                    savepath=os.path.join(dirpath, 'img.png'))

    hist_clipped(grads, peaks_to_clip=2)
    _, ax = plt.subplots(1, 1)
    hist_clipped(grads, peaks_to_clip=2, ax=ax, annot_kw=dict(fontsize=15))

    get_full_name(model, 'gru')
    get_full_name(model, 1)
    pass_on_error(get_full_name, model, 'croc')

    get_weights(model, 'gru', as_dict=False)
    get_weights(model, 'gru', as_dict=True)
    get_weights(model, 'gru/bias')
    get_weights(model, ['gru', 1, (1, 1)])
    pass_on_error(get_weights, model, 'gru/goo')

    get_weights(model, '*')
    get_gradients(model, '*', x, y)
    get_outputs(model, '*', x)

    from see_rnn.utils import _filter_duplicates_by_keys
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4])
    assert keys == ['a', 'b', 'c']
    assert data == [1, 2, 4]
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4],
                                            [5, 6, 7, 8])
    assert keys == ['a', 'b', 'c']
    assert data[0] == [1, 2, 4] and data[1] == [5, 6, 8]

    from see_rnn.inspect_gen import get_layer, detect_nans
    get_layer(model, 'gru')
    get_rnn_weights(model, 1, concat_gates=False, as_tensors=True)
    rnn_heatmap(model, 1, input_data=x, labels=y, mode='weights')
    _test_prefetched_data(model)

    # test NaN/Inf detection
    nan_txt = detect_nans(np.array([1] * 9999 + [np.nan])).replace('\n', ' ')
    print(nan_txt)  # case: print as quantity
    data = np.array([np.nan, np.inf, -np.inf, 0])
    print(detect_nans(data, include_inf=True))
    print(detect_nans(data, include_inf=False))
    data = np.array([np.inf, 0])
    print(detect_nans(data, include_inf=True))
    detect_nans(np.array([0]))

    K.set_value(model.optimizer.lr, 1e12)
    train_model(model, iterations=10)
    rnn_histogram(model, 1)
    rnn_heatmap(model, 1)

    del model
    reset_seeds(reset_graph_with_backend=K)

    # test SimpleRNN & other
    _model = make_model(SimpleRNN,
                        batch_shape,
                        units=128,
                        use_bias=False,
                        IMPORTS=IMPORTS)
    train_model(_model, iterations=1)  # TF2-Keras-Graph bug workaround
    rnn_histogram(_model, 1)  # test _pretty_hist
    K.set_value(_model.optimizer.lr, 1e50)  # force NaNs
    train_model(_model, iterations=20)
    rnn_heatmap(_model, 1)
    data = get_rnn_weights(_model, 1)
    rnn_heatmap(_model, 1, input_data=x, labels=y, data=data)
    os.environ["TF_KERAS"] = '0'
    get_rnn_weights(_model, 1, concat_gates=False)
    del _model

    assert True
    cprint("\n<< MISC TESTS PASSED >>\n", 'green')