def kfra(self):
        with backpack(new_ext.KFRA()):
            _, _, loss = self.problem.forward_pass()
            loss.backward()
            kfra = [p.kfra for p in self.problem.model.parameters()]

        return kfra
Example #2
0
def test_interface_kfra():
    interface_test(new_ext.KFRA())
Example #3
0
def test_interface_kfra_conv():
    interface_test(new_ext.KFRA(), use_conv=True)
Example #4
0
# We can now evaluate the loss and do a backward pass with Backpack
# -----------------------------------------------------------------

loss = lossfunc(model(X), y)

with backpack(
    extensions.BatchGrad(),
    extensions.Variance(),
    extensions.SumGradSquared(),
    extensions.BatchL2Grad(),
    extensions.DiagGGNMC(mc_samples=1),
    extensions.DiagGGNExact(),
    extensions.DiagHessian(),
    extensions.KFAC(mc_samples=1),
    extensions.KFLR(),
    extensions.KFRA(),
):
    loss.backward()

# %%
# And here are the results
# -----------------------------------------------------------------

for name, param in model.named_parameters():
    print(name)
    print(".grad.shape:             ", param.grad.shape)
    print(".grad_batch.shape:       ", param.grad_batch.shape)
    print(".variance.shape:         ", param.variance.shape)
    print(".sum_grad_squared.shape: ", param.sum_grad_squared.shape)
    print(".batch_l2.shape:         ", param.batch_l2.shape)
    print(".diag_ggn_mc.shape:      ", param.diag_ggn_mc.shape)
Example #5
0
 def kfra(self) -> List[List[Tensor]]:  # noqa:D102
     with backpack(new_ext.KFRA()):
         _, _, loss = self.problem.forward_pass()
         loss.backward()
     return self.problem.collect_data("kfra")