def test_distplot(n=100): a = [np.random.randn(n) for i in range(10)] x = range(len(a)) ax = distplot(x, a, showoutliers=1) ax = distplot(x, a, color='r') ax = distplot(x, a, label='points', color='b', showmean=1) ax.legend()
def test_distplot(n=100): a = [np.random.randn(n) for i in range(10)] x = range(len(a)) ax = distplot(x, a, showoutliers=1) ax = distplot(x, a, color="r") ax = distplot(x, a, label="points", color="b", showmean=1) ax.legend()
def plot_autocorr(chain): """ Plot the autocorrelation of parameters in the chain. This can be slow if there are many parameters. """ nwalkers, nsamples, npar = chain.shape nrows, ncols = get_nrows_ncols(npar) fig,axes = get_fig_axes(nrows, ncols, npar) for i,ax in enumerate(axes): acor = [autocorr(chain[j,:,i], maxlag=150) for j in xrange(nwalkers)] distplot(np.transpose(acor), ax=ax) ax.axhline(0, color='r', lw=0.5) puttext(0.1, 0.1, P['names'][i], ax, fontsize=16) return fig, axes
def plot_autocorr(chain): """ Plot the autocorrelation of parameters in the chain. This can be slow if there are many parameters. """ nwalkers, nsamples, npar = chain.shape nrows, ncols = get_nrows_ncols(npar) fig, axes = get_fig_axes(nrows, ncols, npar) for i, ax in enumerate(axes): acor = [autocorr(chain[j, :, i], maxlag=150) for j in xrange(nwalkers)] distplot(np.transpose(acor), ax=ax) ax.axhline(0, color='r', lw=0.5) puttext(0.1, 0.1, P['names'][i], ax, fontsize=16) return fig, axes