Example #1
0
def barrier_density(z, zeta=40, var_m=None, m=None, m_min=None):
    """
	Equation 4
	"""
    delta_c = barkana_loeb_2001.critical_overdensity_collapse(z)
    K_zeta = erfinv(1. - 1. / zeta)
    if var_m is None:
        var_m = barkana_loeb_2001.matter_variance(z, M=m, power_spectra=None)
    if m_min is None: m_min = minimum_source_mass(z, Tvir=1e4)
    var_min = barkana_loeb_2001.matter_variance(z, M=m_min, power_spectra=None)
    return delta_c - np.sqrt(2 * (var_min - var_m)) * K_zeta
Example #2
0
def linear_fit_barrier(m, z, zeta=40, var_m=None):
    B0 = barrier_density(z, zeta=zeta, var_m=0)
    B1 = (barrier_density(z, zeta=zeta, var_m=0.1) -
          barrier_density(z, zeta=zeta, var_m=0)) / 0.1
    if var_m is None:
        var_m = barkana_loeb_2001.matter_variance(z, M=m, power_spectra=None)
    return B0 + B1 * var_m
Example #3
0
def mass_function(m, z, zeta=40):
    rho_mean_ = mean_density(z)  #Solar_mass/Mpc^3
    B0 = barrier_density(z, zeta=zeta, var_m=0)

    def f(x):
        m = np.exp(x)
        y = barkana_loeb_2001.matter_variance(z, M=m)
        return np.sqrt(y)

    if type(m) == np.float:
        sig2 = barkana_loeb_2001.matter_variance(z, M=m, power_spectra=None)
        Bm = linear_fit_barrier(m, z, zeta=zeta, var_m=None)
        dsigdm = derivative(f, np.log(m), order=15)
    else:
        sig2 = np.array([
            barkana_loeb_2001.matter_variance(z, M=m1, power_spectra=None)
            for m1 in m
        ])
        Bm = np.array(
            [linear_fit_barrier(m1, z, zeta=zeta, var_m=None) for m1 in m])
        dsigdm = np.array([derivative(f, np.log(m1), order=15) for m1 in m])
    m_dndm = np.sqrt(2 / np.pi) * rho_mean_ * np.abs(dsigdm) * B0 * np.exp(
        -Bm**2 / (2 * sig2)) / sig2 / m
    return m_dndm
def b_mz(m, z, zeta=40):
    Bm = functions.linear_fit_barrier(m, z, zeta=zeta)
    B0 = functions.barrier_density(z, zeta=zeta, var_m=0)
    var_m = barkana_loeb_2001.matter_variance(z, M=m, power_spectra=None)
    return 1 + B0**2 / var_m / Bm
Example #5
0
 def f(x):
     m = np.exp(x)
     y = barkana_loeb_2001.matter_variance(z, M=m)
     return np.sqrt(y)