def test_predict_different_inputs(self): bamnet = algorithms.DiscreteBAM() data = np.array([[1, 0, 0, 1]]) target = np.array([[1, 0]]) bamnet.train(data, target) test_vectors = create_vectors(data.reshape(data.size), row1d=True) for test_vector in test_vectors: np.testing.assert_array_almost_equal( bamnet.predict(test_vector)[1], target)
def test_predict_different_inputs(self): bamnet = algorithms.DiscreteBAM() data = np.array([[1, 0, 0, 1]]) target = np.array([[1, 0]]) bamnet.train(data, target) test_vectors = create_vectors(data.reshape(data.size), row1d=True) for test_vector in test_vectors: np.testing.assert_array_almost_equal( bamnet.predict(test_vector)[1], target )
def test_reconstruct_different_inputs(self): ojanet = algorithms.Oja(minimized_data_size=1, verbose=False, step=0.01) data = np.array([[1, 2, 3]]).T target = np.array([[1, 2, 3]]).T input_vector = data.ravel() ojanet.train(data, epsilon=0.1) test_vectors = create_vectors(input_vector) for i, test_vector in enumerate(test_vectors, start=1): np.testing.assert_array_almost_equal( ojanet.reconstruct(test_vector), target, decimal=1)
def test_reconstruct_different_inputs(self): ojanet = algorithms.Oja(minimized_data_size=1, verbose=False, step=0.01) data = np.array([[1, 2, 3]]).T target = np.array([[1, 2, 3]]).T input_vector = data.ravel() ojanet.train(data, epsilon=0.1) test_vectors = create_vectors(input_vector) for i, test_vector in enumerate(test_vectors, start=1): np.testing.assert_array_almost_equal( ojanet.reconstruct(test_vector), target, decimal=1 )