Example #1
0
def fit(model, ts, vs, es, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('tagger', 'dynet', kwargs.get('basedir'))
    conll_output = kwargs.get('conll_output', None)
    txts = kwargs.get('txts', None)

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_metric'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    #validation_improvement_fn = kwargs.get('validation_improvement', None)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model, **kwargs)

    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New max %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        trainer = create_trainer(model, **kwargs)
        trainer.test(es,
                     reporting_fns,
                     conll_output=conll_output,
                     txts=txts,
                     phase='Test')
Example #2
0
def fit(model, ts, vs, es, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs
    conll_output = kwargs.get('conll_output', None)
    span_type = kwargs.get('span_type', 'iob')
    txts = kwargs.get('txts', None)
    model_file = get_model_file(kwargs, 'tagger', 'tf')
    after_train_fn = kwargs['after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(TaggerTrainerTf, model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    init = tf.global_variables_initializer()
    model.sess.run(init)
    saver = tf.train.Saver()
    model.save_using(saver)
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = bool(kwargs.get('verbose', False))
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' % (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', basic_reporting))
    print('reporting', reporting_fns)

    max_metric = 0
    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max %.3f' % max_metric)
            trainer.checkpoint()
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' % (max_metric, last_improved))
    if es is not None:

        trainer.recover_last_checkpoint()
        # What to do about overloading this??
        evaluator = TaggerEvaluatorTf(model, span_type, verbose)
        test_metrics = evaluator.test(es, conll_output=conll_output, txts=txts)
        for reporting in reporting_fns:
            reporting(test_metrics, 0, 'Test')
Example #3
0
def fit(model, ts, vs, es, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file(kwargs, 'tagger', 'pytorch')
    conll_output = kwargs.get('conll_output', None)
    txts = kwargs.get('txts', None)

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', basic_reporting))
    print('reporting', reporting_fns)

    #validation_improvement_fn = kwargs.get('validation_improvement', None)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(TaggerTrainerPyTorch, model, **kwargs)

    last_improved = 0
    max_metric = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            #if validation_improvement_fn is not None:
            #    validation_improvement_fn(early_stopping_metric, test_metrics, epoch, max_metric, last_improved)
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max %.3f' % max_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' %
              (max_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(TaggerTrainerPyTorch, model, **kwargs)
        trainer.test(es,
                     reporting_fns,
                     conll_output=conll_output,
                     txts=txts,
                     phase='Test')
Example #4
0
 def train(self, checkpoint=None, zip_model=True):
     save_vectorizers(self.get_basedir(), self.vectorizers)
     basename = get_model_file(self.task_name(), self.backend.name, self.get_basedir())
     model = create_servable_embeddings_model(self.embeddings, **self.config_params.get('model', {}))
     model.save(basename)
     if zip_model:
        zip_files(self.get_basedir())
     return None, None
Example #5
0
def fit(model, ts, vs, es=None, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs

    model_file = get_model_file(kwargs, 'seq2seq', 'tf')
    after_train_fn = kwargs[
        'after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(Seq2SeqTrainerTf, model, **kwargs)
    init = tf.global_variables_initializer()
    model.sess.run(init)
    saver = tf.train.Saver()
    trainer.prepare(saver)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    min_metric = 10000
    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif test_metrics[early_stopping_metric] < min_metric:
            last_improved = epoch
            min_metric = test_metrics[early_stopping_metric]
            print('New min %.3f' % min_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on min_metric %.3f at epoch %d' %
              (min_metric, last_improved))
    if es is not None:

        trainer.recover_last_checkpoint()
        trainer.test(es, reporting_fns, phase='Test')
    if kwargs.get("model_zip", False):
        zip_model(model_file)
Example #6
0
def fit(model,
        ts,
        vs,
        es=None,
        epochs=5,
        do_early_stopping=True,
        early_stopping_metric='avg_loss',
        **kwargs):

    patience = int(kwargs.get('patience', epochs))
    after_train_fn = kwargs.get('after_train_fn', None)

    model_file = get_model_file('lm', 'dy', kwargs.get('basedir'))

    trainer = create_trainer(model, **kwargs)

    best_metric = 10000
    if do_early_stopping:
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        logger.info("Doing early stopping on [%s] with patience [%d]",
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info("New best %.3f", best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info("Stopping due to persistent failures to improve")
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
Example #7
0
def fit(model, ts, vs, es=None, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs

    model_file = get_model_file('seq2seq', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs[
        'after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model, **kwargs)
    init = tf.global_variables_initializer()
    model.sess.run(init)
    saver = tf.train.Saver()
    trainer.prepare(saver)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'bleu')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' %
              (early_stopping_metric, best_metric, last_improved))
    if es is not None:
        trainer.recover_last_checkpoint()
        trainer.test(es, reporting_fns, phase='Test')
Example #8
0
def fit(model,
        ts,
        vs,
        es=None,
        epochs=5,
        do_early_stopping=True,
        early_stopping_metric='bleu',
        **kwargs):

    patience = int(kwargs.get('patience', epochs))
    after_train_fn = kwargs.get('after_train_fn', None)

    model_file = get_model_file('seq2seq', 'dy', kwargs.get('basedir'))

    trainer = create_trainer(model, **kwargs)

    best_metric = 0
    if do_early_stopping:
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        print("Doing early stopping on [{}] with patience [{}]".format(
            early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print("New best {:.3f}".format(best_metric))
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print("Stopping due to persistent failures to improve")
            break

    if do_early_stopping is True:
        print('Best performance on {}: {:.3f} at epoch {}'.format(
            early_stopping_metric, best_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = model.load(model_file)
        trainer.test(es, reporting_fns, phase='Test')
Example #9
0
def fit(model, ts, vs, es, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('tagger', 'pytorch', kwargs.get('basedir'))
    conll_output = kwargs.get('conll_output', None)
    txts = kwargs.get('txts', None)

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    #validation_improvement_fn = kwargs.get('validation_improvement', None)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model, **kwargs)

    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            #if validation_improvement_fn is not None:
            #    validation_improvement_fn(early_stopping_metric, test_metrics, epoch, max_metric, last_improved)
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)


        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(model, **kwargs)
        test_metrics = trainer.test(es, reporting_fns, conll_output=conll_output, txts=txts, phase='Test')
    return test_metrics
Example #10
0
def fit(model,
        ts,
        vs,
        es,
        epochs=20,
        do_early_stopping=True,
        early_stopping_metric='acc',
        **kwargs):
    autobatchsz = kwargs.get('autobatchsz', 1)
    verbose = kwargs.get(
        'verbose', {
            'print': kwargs.get('verbose_print', False),
            'file': kwargs.get('verbose_file', None)
        })
    model_file = get_model_file('classify', 'dynet', kwargs.get('basedir'))

    best_metric = 0
    if do_early_stopping:
        patience = kwargs.get('patience', epochs)
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    trainer = create_trainer(model, **kwargs)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)
    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        trainer.test(es, reporting_fns, phase='Test', verbose=verbose)
Example #11
0
def fit(model,
        ts,
        vs,
        es,
        epochs=20,
        do_early_stopping=True,
        early_stopping_metric='acc',
        **kwargs):
    autobatchsz = kwargs.get('autobatchsz', 1)
    verbose = kwargs.get(
        'verbose', {
            'print': kwargs.get('verbose_print', False),
            'file': kwargs.get('verbose_file', None)
        })
    model_file = get_model_file(kwargs, 'classify', 'dynet')
    if do_early_stopping:
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [{}] with patience [{}]'.format(
            early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    if autobatchsz != 1:
        trainer = create_trainer(ClassifyTrainerAutobatch, model, **kwargs)
    else:
        trainer = create_trainer(ClassifyTrainerDynet, model, **kwargs)

    max_metric = 0
    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max {:.3f}'.format(max_metric))
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on max_metric {:.3f} at epoch {}'.format(
            max_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = model.load(model_file)
        trainer.test(es, reporting_fns, phase='Test', verbose=verbose)
Example #12
0
def fit(model_params, ts, vs, es=None, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('seq2seq', 'pytorch', kwargs.get('basedir'))


    num_loader_workers = int(kwargs.get('num_loader_workers', 0))
    pin_memory = bool(kwargs.get('pin_memory', True))
    ts = DataLoader(ts, num_workers=num_loader_workers, batch_size=None, pin_memory=pin_memory)
    vs = DataLoader(vs, batch_size=None, pin_memory=pin_memory)
    es = DataLoader(es, batch_size=None, pin_memory=pin_memory) if es is not None else None

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'perplexity')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model_params, **kwargs)

    last_improved = 0
    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)

        if after_train_fn is not None:
            after_train_fn(trainer.model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        model = torch.load(model_file)
        trainer = Seq2SeqTrainerPyTorch(model, **kwargs)
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
Example #13
0
def fit(model,
        ts,
        vs,
        es=None,
        epochs=5,
        do_early_stopping=True,
        early_stopping_metric='avg_loss',
        **kwargs):

    patience = int(kwargs.get('patience', epochs))
    after_train_fn = kwargs.get('after_train_fn', None)

    model_file = get_model_file(kwargs, 'seq2seq', 'dy')

    trainer = create_trainer(Seq2SeqTrainerDynet, model, **kwargs)

    if do_early_stopping:
        print("Doing early stopping on [{}] with patience [{}]".format(
            early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    min_metric = 10000
    last_improved = 0

    #if after_train_fn is not None:
    #    after_train_fn(model)
    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] < min_metric:
            last_improved = epoch
            min_metric = test_metrics[early_stopping_metric]
            print("New min {:.3f}".format(min_metric))
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print("Stopping due to persistent failures to improve")
            break

    if do_early_stopping is True:
        print('Best performance on min_metric {:.3f} at epoch {}'.format(
            min_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = model.load(model_file)
        trainer.test(es, reporting_fns, phase='Test')
Example #14
0
def fit(model, ts, vs, es, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    model_file = get_model_file('lm', 'pytorch', kwargs.get('basedir'))

    best_metric = 10000
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model, **kwargs)
    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(model, **kwargs)
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
Example #15
0
def fit(model, ts, vs, es=None, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('seq2seq', 'pytorch', kwargs.get('basedir'))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'bleu')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model, **kwargs)

    last_improved = 0
    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)

        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' %
              (early_stopping_metric, best_metric, last_improved))

    if es is not None:
        model.load(model_file)
        trainer = Seq2SeqTrainerPyTorch(model, **kwargs)
        trainer.test(es, reporting_fns, phase='Test')
Example #16
0
def fit(model, ts, vs, es, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    model_file = get_model_file(kwargs, 'lm', 'pytorch')

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(LanguageModelTrainerPyTorch, model, **kwargs)
    min_metric = 10000
    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] < min_metric:
            #if validation_improvement_fn is not None:
            #    validation_improvement_fn(early_stopping_metric, test_metrics, epoch, max_metric, last_improved)
            last_improved = epoch
            min_metric = test_metrics[early_stopping_metric]
            print('New min %.3f' % min_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' %
              (min_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(LanguageModelTrainerPyTorch, model, **kwargs)
        trainer.test(es, reporting_fns, phase='Test')
Example #17
0
def fit(model, ts, vs, es=None, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file(kwargs, 'seq2seq', 'pytorch')

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', basic_reporting))
    print('reporting', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = Seq2SeqTrainerPyTorch(model, **kwargs)

    min_metric = 10000
    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)

        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] < min_metric:
            last_improved = epoch
            min_metric = test_metrics[early_stopping_metric]
            print('New min %.3f' % min_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on min_metric %.3f at epoch %d' %
              (min_metric, last_improved))

    if es is not None:
        model.load(model_file)
        trainer = Seq2SeqTrainerPyTorch(model, **kwargs)
        trainer.test(es, reporting_fns, phase='Test')
Example #18
0
def fit(model, ts, vs, es=None, **kwargs):

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('seq2seq', 'pytorch', kwargs.get('basedir'))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'bleu')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    after_train_fn = kwargs.get('after_train_fn', None)
    trainer = create_trainer(model, **kwargs)

    last_improved = 0
    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)

        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        model.load(model_file)
        trainer = Seq2SeqTrainerPyTorch(model, **kwargs)
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
def fit(model_params, _, ts, vs=None, **kwargs):

    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))
    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    TRAIN_FLAG()
    trainer = create_trainer(model_params, **kwargs)

    test_metrics = trainer.test(vs, reporting_fns, phase="Test-Before", dataset=False)
    trainer.train(ts, reporting_fns, dataset=False)
    test_metrics = trainer.test(vs, reporting_fns, phase="Test", dataset=False)

    trainer.checkpoint()
    trainer.model.save(model_file)
Example #20
0
def fit(model, ts, vs, es=None, epochs=5, do_early_stopping=True,
        early_stopping_metric='bleu', **kwargs):

    patience = int(kwargs.get('patience', epochs))
    after_train_fn = kwargs.get('after_train_fn', None)

    model_file = get_model_file('seq2seq', 'dy', kwargs.get('basedir'))

    trainer = create_trainer(model, **kwargs)

    best_metric = 0
    if do_early_stopping:
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        logger.info("Doing early stopping on [%s] with patience [%d]", early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info("New best %.3f", best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info("Stopping due to persistent failures to improve")
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
def fit(model_params, _, ts, vs=None, **kwargs):
    """Calibrate a model with temperature scaling"""

    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))

    batchsz = kwargs['batchsz']
    lengths_key = model_params.get('lengths_key')

    ## First, make tf.datasets for ts, vs and es
    # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/distribute/README.md
    # effective_batch_sz = args.batchsz*args.gpus
    train_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(ts, lengths_key))
    train_dataset = train_dataset.batch(batchsz, drop_remainder=False)
    train_dataset = train_dataset.repeat(2)
    train_dataset = train_dataset.prefetch(NUM_PREFETCH)

    valid_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(vs, lengths_key))
    valid_dataset = valid_dataset.batch(batchsz, drop_remainder=False)
    valid_dataset = valid_dataset.repeat(2)
    valid_dataset = valid_dataset.prefetch(NUM_PREFETCH)

    iter = tf.compat.v1.data.Iterator.from_structure(tf.compat.v1.data.get_output_types(train_dataset),
                                                     tf.compat.v1.data.get_output_shapes(train_dataset))

    features, y = iter.get_next()
    # Add features to the model params
    model_params.update(features)
    model_params['y'] = tf.one_hot(tf.reshape(y, [-1]), len(model_params['labels']))
    # create the initialisation operations
    train_init_op = iter.make_initializer(train_dataset)
    valid_init_op = iter.make_initializer(valid_dataset)

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    TRAIN_FLAG()
    trainer = create_trainer(model_params, **kwargs)
    last_improved = 0

    trainer.sess.run(train_init_op)
    trainer.train(ts, reporting_fns)
    trainer.sess.run(valid_init_op)
    test_metrics = trainer.test(vs, reporting_fns, phase='Test')

    trainer.checkpoint()
    trainer.model.save(model_file)
Example #22
0
def fit(model, ts, vs, es, epochs=20, do_early_stopping=True, early_stopping_metric='acc', **kwargs):
    autobatchsz = kwargs.get('autobatchsz', 1)
    verbose = kwargs.get('verbose', {'print': kwargs.get('verbose_print', False), 'file': kwargs.get('verbose_file', None)})
    model_file = get_model_file('classify', 'dynet', kwargs.get('basedir'))

    best_metric = 0
    if do_early_stopping:
        patience = kwargs.get('patience', epochs)
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    trainer = create_trainer(model, **kwargs)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)
    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        test_metrics = trainer.test(es, reporting_fns, phase='Test', verbose=verbose)
    return test_metrics
Example #23
0
def fit(model_params, ts, vs, es=None, **kwargs):
    """
    Train an language model using TensorFlow with a `feed_dict`.

    :param model_params: The model (or parameters to create the model) to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True
        * *verbose* (`dict`) A dictionary containing `console` boolean and `file` name if on
        * *epochs* (``int``) -- how many epochs.  Default to 5
        * *outfile* -- Model output file
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *nsteps* (`int`) -- If we should report every n-steps, this should be passed
        * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e
        * *clip* (`int`) -- If we are doing gradient clipping, what value to use
        * *optim* (`str`) -- The name of the optimizer we are using
        * *lr* (`float`) -- The learning rate we are using
        * *mom* (`float`) -- If we are using SGD, what value to use for momentum
        * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9`
        * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999`
        * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8
        * *after_train_fn* (`func`) -- A callback to fire after ever epoch of training

    :return: None
    """
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs

    model_file = get_model_file('lm', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs['after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model_params, **kwargs)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    best_metric = 1000
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' % (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(trainer.model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' % (early_stopping_metric, best_metric, last_improved))
    if es is not None:
        trainer.recover_last_checkpoint()
        trainer.test(es, reporting_fns, phase='Test')
Example #24
0
def fit(model, ts, vs, es, **kwargs):
    """
    Train a classifier using PyTorch
    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs: See below
    
    :Keyword Arguments:
        * *do_early_stopping* (``bool``) -- Stop after eval data is not improving. Default to True
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* -- 
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *optim* --
           Optimizer to use, defaults to `sgd`
        * *eta, lr* (``float``) --
           Learning rate, defaults to 0.01
        * *mom* (``float``) --
           Momentum (SGD only), defaults to 0.9 if optim is `sgd`
    :return: 
    """
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file(kwargs, 'classify', 'pytorch')
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' % (early_stopping_metric, patience))    

    reporting_fns = listify(kwargs.get('reporting', basic_reporting))
    print('reporting', reporting_fns)


    trainer = create_trainer(ClassifyTrainerPyTorch, model, **kwargs)

    max_metric = 0
    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)
        
        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max %.3f' % max_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break
        
    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' % (max_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(ClassifyTrainerPyTorch, model, **kwargs)
        trainer.test(es, reporting_fns, phase='Test')
Example #25
0
def fit(model, ts, vs, es, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs
    conll_output = kwargs.get('conll_output', None)
    span_type = kwargs.get('span_type', 'iob')
    txts = kwargs.get('txts', None)
    model_file = get_model_file('tagger', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs['after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    feed_dict = {k: v for e in model.embeddings.values() for k, v in e.get_feed_dict().items()}
    init = tf.global_variables_initializer()
    model.sess.run(init, feed_dict)
    saver = tf.train.Saver()
    model.save_using(saver)
    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = bool(kwargs.get('verbose', False))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)
    if es is not None:

        trainer.recover_last_checkpoint()
        # What to do about overloading this??
        evaluator = TaggerEvaluatorTf(model, span_type, verbose)
        start = time.time()
        test_metrics = evaluator.test(es, conll_output=conll_output, txts=txts)
        duration = time.time() - start
        for reporting in reporting_fns:
            reporting(test_metrics, 0, 'Test')
        trainer.log.debug({'phase': 'Test', 'time': duration})
    return test_metrics
Example #26
0
def fit_datasets(model_params, ts, vs, es=None, **kwargs):
    """
    Train a tagger using TensorFlow with `tf.dataset`.  This
    is the default behavior for training.

    :param model_params: The model (or parameters to create the model) to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True
        * *verbose* (`dict`) A dictionary containing `console` boolean and `file` name if on
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *nsteps* (`int`) -- If we should report every n-steps, this should be passed
        * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e
        * *clip* (`int`) -- If we are doing gradient clipping, what value to use
        * *optim* (`str`) -- The name of the optimizer we are using
        * *lr* (`float`) -- The learning rate we are using
        * *mom* (`float`) -- If we are using SGD, what value to use for momentum
        * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9`
        * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999`
        * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8

    :return: None
    """
    conll_output = kwargs.get('conll_output', None)
    span_type = kwargs.get('span_type', 'iob')
    txts = kwargs.get('txts', None)
    model_file = get_model_file('tagger', 'tf', kwargs.get('basedir'))

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = kwargs.get('verbose', {'console': kwargs.get('verbose_console', False), 'file': kwargs.get('verbose_file', None)})
    epochs = int(kwargs.get('epochs', 20))

    batchsz = kwargs['batchsz']
    ## First, make tf.datasets for ts, vs and es
    # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/distribute/README.md
    # effective_batch_sz = args.batchsz*args.gpus
    test_batchsz = kwargs.get('test_batchsz', batchsz)
    # This is a little awkward:
    lengths_key = model_params.get('lengths_key')

    train_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(ts, lengths_key))
    train_dataset = train_dataset.shuffle(buffer_size=SHUF_BUF_SZ)
    train_dataset = train_dataset.batch(batchsz, drop_remainder=False)
    train_dataset = train_dataset.repeat(epochs + 1)
    train_dataset = train_dataset.prefetch(NUM_PREFETCH)

    valid_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(vs, lengths_key))
    valid_dataset = valid_dataset.batch(batchsz, drop_remainder=False)
    valid_dataset = valid_dataset.repeat(epochs + 1)
    valid_dataset = valid_dataset.prefetch(NUM_PREFETCH)

    iter = tf.compat.v1.data.Iterator.from_structure(tf.compat.v1.data.get_output_types(train_dataset),
                                                     tf.compat.v1.data.get_output_shapes(train_dataset))

    features, y = iter.get_next()
    # Add features to the model params
    model_params.update(features)
    model_params['y'] = y
    # create the initialisation operations
    train_init_op = iter.make_initializer(train_dataset)
    valid_init_op = iter.make_initializer(valid_dataset)

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' % (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    TRAIN_FLAG()
    trainer = create_trainer(model_params, **kwargs)

    last_improved = 0

    for epoch in range(epochs):
        trainer.sess.run(train_init_op)
        trainer.train(ts, reporting_fns)
        trainer.sess.run(valid_init_op)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' % (early_stopping_metric, best_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        trainer.recover_last_checkpoint()

        test_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(es, lengths_key))
        test_dataset = test_dataset.batch(test_batchsz, drop_remainder=False)
        test_dataset = test_dataset.repeat(epochs + 1)
        test_dataset = test_dataset.prefetch(NUM_PREFETCH)
        test_init_op = iter.make_initializer(test_dataset)
        trainer.sess.run(test_init_op)
        # What to do about overloading this??
        evaluator = TaggerEvaluatorTf(trainer.model, span_type, verbose)
        start = time.time()
        test_metrics = evaluator.test(es, conll_output=conll_output, txts=txts)
        duration = time.time() - start
        for reporting in reporting_fns:
            reporting(test_metrics, 0, 'Test')
        trainer.log.debug({'phase': 'Test', 'time': duration})
Example #27
0
def fit(model, ts, vs, es, **kwargs):
    """
    Train a classifier using PyTorch
    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs: See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) -- Stop after eval data is not improving. Default to True
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *optim* --
           Optimizer to use, defaults to `sgd`
        * *eta, lr* (``float``) --
           Learning rate, defaults to 0.01
        * *mom* (``float``) --
           Momentum (SGD only), defaults to 0.9 if optim is `sgd`
    :return:
    """
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = kwargs.get('verbose', {'console': kwargs.get('verbose_console', False), 'file': kwargs.get('verbose_file', None)})
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'pytorch', kwargs.get('basedir'))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('eatly_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)


    trainer = create_trainer(model, **kwargs)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(model, **kwargs)
        test_metrics = trainer.test(es, reporting_fns, phase='Test', verbose=verbose)
    return test_metrics
Example #28
0
def fit(model, ts, vs, es, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs
    conll_output = kwargs.get('conll_output', None)
    span_type = kwargs.get('span_type', 'iob')
    txts = kwargs.get('txts', None)
    model_file = get_model_file('tagger', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs[
        'after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    init = tf.global_variables_initializer()
    model.sess.run(init)
    saver = tf.train.Saver()
    model.save_using(saver)
    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = bool(kwargs.get('verbose', False))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)
    if es is not None:

        trainer.recover_last_checkpoint()
        # What to do about overloading this??
        evaluator = TaggerEvaluatorTf(model, span_type, verbose)
        start = time.time()
        test_metrics = evaluator.test(es, conll_output=conll_output, txts=txts)
        duration = time.time() - start
        for reporting in reporting_fns:
            reporting(test_metrics, 0, 'Test')
        trainer.log.debug({'phase': 'Test', 'time': duration})
Example #29
0
def fit(model, ts, vs, es=None, **kwargs):
    """
    Train a classifier using TensorFlow

    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True

        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * Additional arguments are supported, see :func:`baseline.tf.optimize` for full list
    :return:
    """
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = kwargs.get(
        'verbose', {
            'console': kwargs.get('verbose_console', False),
            'file': kwargs.get('verbose_file', None)
        })
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))
    ema = True if kwargs.get('ema_decay') is not None else False

    output = kwargs.get('output')
    txts = kwargs.get('txts')

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    m = model.replicas[0] if hasattr(model, 'replicas') else model
    feed_dict = {
        k: v
        for e in m.embeddings.values() for k, v in e.get_feed_dict().items()
    }
    model.sess.run(tf.global_variables_initializer(), feed_dict)
    model.set_saver(tf.train.Saver())
    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)

    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        trainer.recover_last_checkpoint()
        test_metrics = trainer.test(es,
                                    reporting_fns,
                                    phase='Test',
                                    verbose=verbose,
                                    output=output,
                                    txts=txts)
    return test_metrics
Example #30
0
def train(model, ts, vs, es=None, **kwargs):
    """
    Train a classifier using TensorFlow

    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True

        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * Additional arguments are supported, see :func:`baseline.tf.optimize` for full list
    :return:
    """
    n = int(kwargs.get('test_epochs', 5))
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    model.sess.run(tf.global_variables_initializer())
    model.set_saver(tf.train.Saver())

    max_metric = 0
    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if epoch > 0 and epoch % n == 0 and epoch < epochs - 1:
            print(color('Running test', Colors.GREEN))
            trainer.test(es, reporting_fns, phase='Test')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max %.3f' % max_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print(
                color('Stopping due to persistent failures to improve',
                      Colors.RED))
            break

    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' %
              (max_metric, last_improved))

    if es is not None:
        print(color('Reloading best checkpoint', Colors.GREEN))
        trainer.recover_last_checkpoint()
        trainer.test(es, reporting_fns, phase='Test')
Example #31
0
def fit(model_params, ts, vs, es, **kwargs):
    """
    Train a classifier using PyTorch
    :param model_params: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs: See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) -- Stop after eval data is not improving. Default to True
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *optim* --
           Optimizer to use, defaults to `sgd`
        * *eta, lr* (``float``) --
           Learning rate, defaults to 0.01
        * *mom* (``float``) --
           Momentum (SGD only), defaults to 0.9 if optim is `sgd`
    :return:
    """
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = kwargs.get(
        'verbose', {
            'console': kwargs.get('verbose_console', False),
            'file': kwargs.get('verbose_file', None)
        })
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'pytorch', kwargs.get('basedir'))
    output = kwargs.get('output')
    txts = kwargs.get('txts')

    num_loader_workers = int(kwargs.get('num_loader_workers', 0))
    pin_memory = bool(kwargs.get('pin_memory', True))

    if not isinstance(ts, DataLoader):
        ts = DataLoader(ts,
                        num_workers=num_loader_workers,
                        batch_size=None,
                        pin_memory=pin_memory)
    if not isinstance(vs, DataLoader):
        vs = DataLoader(vs, batch_size=None, pin_memory=pin_memory)
    if es and not isinstance(es, DataLoader):
        es = DataLoader(es, batch_size=None, pin_memory=pin_memory)

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)
    trainer = create_trainer(model_params, **kwargs)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            trainer.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = torch.load(model_file)
        trainer = create_trainer(model, **kwargs)
        test_metrics = trainer.test(es,
                                    reporting_fns,
                                    phase='Test',
                                    verbose=verbose,
                                    output=output,
                                    txts=txts)
    return test_metrics
Example #32
0
def fit_eager_distributed(model_params, ts, vs, es=None, **kwargs):
    """
    Train an language model using TensorFlow with `tf.dataset`.  This
    is the default behavior for training.

    :param model_params: The model (or parameters to create the model) to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True
        * *verbose* (`dict`) A dictionary containing `console` boolean and `file` name if on
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *nsteps* (`int`) -- If we should report every n-steps, this should be passed
        * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e
        * *clip* (`int`) -- If we are doing gradient clipping, what value to use
        * *optim* (`str`) -- The name of the optimizer we are using
        * *lr* (`float`) -- The learning rate we are using
        * *mom* (`float`) -- If we are using SGD, what value to use for momentum
        * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9`
        * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999`
        * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8

    :return: None
    """

    epochs = int(kwargs.get('epochs', 5))
    patience = int(kwargs.get('patience', epochs))

    model_file = get_model_file('lm', 'tf', kwargs.get('basedir'))

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    batchsz = kwargs['batchsz']
    test_batchsz = kwargs.get('test_batchsz', batchsz)
    tgt_key = model_params.get('tgt_key')

    train_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(ts))
    train_dataset = train_dataset.shuffle(buffer_size=SHUF_BUF_SZ)
    train_dataset = train_dataset.batch(batchsz, drop_remainder=True)
    train_dataset = train_dataset.prefetch(NUM_PREFETCH)

    valid_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(vs))
    valid_dataset = valid_dataset.batch(batchsz, drop_remainder=True)
    valid_dataset = valid_dataset.prefetch(NUM_PREFETCH)

    trainer = LanguageModelTrainerDistributedTf(model_params, **kwargs)
    train_dataset = trainer.distribute(train_dataset)
    valid_dataset = trainer.distribute(valid_dataset)

    last_improved = 0
    SET_TRAIN_FLAG(True)

    for epoch in range(epochs):

        trainer.train(train_dataset, reporting_fns, steps=len(ts))
        test_metrics = trainer.test(valid_dataset,
                                    reporting_fns,
                                    phase='Valid',
                                    steps=len(vs))

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' %
              (early_stopping_metric, best_metric, last_improved))

    if es is not None:
        print('Reloading best checkpoint')
        trainer.recover_last_checkpoint()
        trainer.strategy = tf.distribute.OneDeviceStrategy('/device:GPU:0')
        test_dataset = tf.data.Dataset.from_tensor_slices(to_tensors(es))
        test_dataset = test_dataset.batch(test_batchsz, drop_remainder=False)
        test_dataset = test_dataset.prefetch(NUM_PREFETCH)
        test_dataset = trainer.distribute(test_dataset)
        trainer.test(test_dataset, reporting_fns, phase='Test', steps=len(es))
Example #33
0
def fit(model_params, ts, vs, es, **kwargs):
    """
    Train a classifier using TensorFlow with a `feed_dict`.  This
    is the previous default behavior for training.  To use this, you need to pass
    `fit_func: feed_dict` in your MEAD config

    :param model_params: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True
        * *verbose* (`dict`) A dictionary containing `console` boolean and `file` name if on
        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *nsteps* (`int`) -- If we should report every n-steps, this should be passed
        * *ema_decay* (`float`) -- If we are doing an exponential moving average, what decay to us4e
        * *clip* (`int`) -- If we are doing gradient clipping, what value to use
        * *optim* (`str`) -- The name of the optimizer we are using
        * *lr* (`float`) -- The learning rate we are using
        * *mom* (`float`) -- If we are using SGD, what value to use for momentum
        * *beta1* (`float`) -- Adam-specific hyper-param, defaults to `0.9`
        * *beta2* (`float`) -- Adam-specific hyper-param, defaults to `0.999`
        * *epsilon* (`float`) -- Adam-specific hyper-param, defaults to `1e-8

    :return: None
    """
    epochs = int(kwargs.get('epochs', 5))
    patience = int(kwargs.get('patience', epochs))
    conll_output = kwargs.get('conll_output', None)
    span_type = kwargs.get('span_type', 'iob')
    txts = kwargs.get('txts', None)
    model_file = get_model_file('tagger', 'tf', kwargs.get('basedir'))
    TRAIN_FLAG()

    trainer = create_trainer(model_params, **kwargs)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = bool(kwargs.get('verbose', False))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' %
              (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    last_improved = 0
    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            print('New best %.3f' % best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        print('Best performance on %s: %.3f at epoch %d' %
              (early_stopping_metric, best_metric, last_improved))
    if es is not None:

        trainer.recover_last_checkpoint()
        # What to do about overloading this??
        evaluator = TaggerEvaluatorTf(trainer.model, span_type, verbose)
        timer = Timer()
        test_metrics = evaluator.test(es, conll_output=conll_output, txts=txts)
        duration = timer.elapsed()
        for reporting in reporting_fns:
            reporting(test_metrics, 0, 'Test')
        trainer.log.debug({'phase': 'Test', 'time': duration})
Example #34
0
def fit(model, ts, vs, es=None, **kwargs):
    """
    Train a classifier using TensorFlow

    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True

        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * Additional arguments are supported, see :func:`baseline.tf.optimize` for full list
    :return:
    """
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    verbose = kwargs.get('verbose', {'console': kwargs.get('verbose_console', False), 'file': kwargs.get('verbose_file', None)})
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))
    ema = True if kwargs.get('ema_decay') is not None else False

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    feed_dict = {k: v for e in model.embeddings.values() for k, v in e.get_feed_dict().items()}
    model.sess.run(tf.global_variables_initializer(), feed_dict)
    model.set_saver(tf.train.Saver())
    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)


    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        trainer.recover_last_checkpoint()
        test_metrics = trainer.test(es, reporting_fns, phase='Test', verbose=verbose)
    return test_metrics
Example #35
0
def fit(model, ts, vs, es=None, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs

    model_file = get_model_file('seq2seq', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs[
        'after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model, **kwargs)
    feed_dict = {
        k: v
        for e in model.src_embeddings.values()
        for k, v in e.get_feed_dict().items()
    }
    feed_dict.update(model.tgt_embedding.get_feed_dict())
    init = tf.global_variables_initializer()
    model.sess.run(init, feed_dict)
    saver = tf.train.Saver()
    trainer.prepare(saver)

    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    best_metric = 0
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'bleu')
        early_stopping_cmp, best_metric = get_metric_cmp(
            early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]',
                    early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):
        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric],
                                best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d',
                    early_stopping_metric, best_metric, last_improved)
    if es is not None:
        trainer.recover_last_checkpoint()
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
Example #36
0
def fit(model, ts, vs, es=None, **kwargs):
    epochs = int(kwargs['epochs']) if 'epochs' in kwargs else 5
    patience = int(kwargs['patience']) if 'patience' in kwargs else epochs

    model_file = get_model_file('lm', 'tf', kwargs.get('basedir'))
    after_train_fn = kwargs['after_train_fn'] if 'after_train_fn' in kwargs else None
    trainer = create_trainer(model, **kwargs)
    init = tf.global_variables_initializer()
    feed_dict = {k: v for e in model.embeddings.values() for k, v in e.get_feed_dict().items()}
    model.sess.run(init, feed_dict)
    saver = tf.train.Saver()
    model.set_saver(saver)
    checkpoint = kwargs.get('checkpoint')
    if checkpoint is not None:
        latest = tf.train.latest_checkpoint(checkpoint)
        print('Reloading ' + latest)
        model.saver.restore(model.sess, latest)

    do_early_stopping = bool(kwargs.get('do_early_stopping', True))

    best_metric = 1000
    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'avg_loss')
        early_stopping_cmp, best_metric = get_metric_cmp(early_stopping_metric, kwargs.get('early_stopping_cmp'))
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        if after_train_fn is not None:
            after_train_fn(model)

        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif early_stopping_cmp(test_metrics[early_stopping_metric], best_metric):
            last_improved = epoch
            best_metric = test_metrics[early_stopping_metric]
            logger.info('New best %.3f', best_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on %s: %.3f at epoch %d', early_stopping_metric, best_metric, last_improved)
    if es is not None:
        trainer.recover_last_checkpoint()
        test_metrics = trainer.test(es, reporting_fns, phase='Test')
    return test_metrics
Example #37
0
def fit(model, ts, vs, es=None, **kwargs):
    """
    Train a classifier using Keras
    
    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True

        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model-keras
        * *patience* (``int``) --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * *optim* --
           What optimizer to use.  Defaults to `adam`
    :return:
    """
    trainer = create_trainer(model, **kwargs)
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'keras', kwargs.get('basedir'))

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        logger.info('Doing early stopping on [%s] with patience [%d]', early_stopping_metric, patience)

    reporting_fns = listify(kwargs.get('reporting', []))
    logger.info('reporting %s', reporting_fns)

    max_metric = 0
    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns)

        if do_early_stopping is False:
            model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            logger.info('New max %.3f', max_metric)
            model.save(model_file)

        elif (epoch - last_improved) > patience:
            logger.info('Stopping due to persistent failures to improve')
            break

    if do_early_stopping is True:
        logger.info('Best performance on max_metric %.3f at epoch %d', max_metric, last_improved)

    if es is not None:
        logger.info('Reloading best checkpoint')
        model = model.load(model_file)
        trainer = ClassifyTrainerKeras(model, **kwargs)
        trainer.test(es, reporting_fns, phase='Test')
Example #38
0
def train(model, ts, vs, es=None, **kwargs):
    """
    Train a classifier using TensorFlow

    :param model: The model to train
    :param ts: A training data set
    :param vs: A validation data set
    :param es: A test data set, can be None
    :param kwargs:
        See below

    :Keyword Arguments:
        * *do_early_stopping* (``bool``) --
          Stop after evaluation data is no longer improving.  Defaults to True

        * *epochs* (``int``) -- how many epochs.  Default to 20
        * *outfile* -- Model output file, defaults to classifier-model.pyth
        * *patience* --
           How many epochs where evaluation is no longer improving before we give up
        * *reporting* --
           Callbacks which may be used on reporting updates
        * Additional arguments are supported, see :func:`baseline.tf.optimize` for full list
    :return:
    """
    n = int(kwargs.get('test_epochs', 5))
    do_early_stopping = bool(kwargs.get('do_early_stopping', True))
    epochs = int(kwargs.get('epochs', 20))
    model_file = get_model_file('classify', 'tf', kwargs.get('basedir'))

    if do_early_stopping:
        early_stopping_metric = kwargs.get('early_stopping_metric', 'acc')
        patience = kwargs.get('patience', epochs)
        print('Doing early stopping on [%s] with patience [%d]' % (early_stopping_metric, patience))

    reporting_fns = listify(kwargs.get('reporting', []))
    print('reporting', reporting_fns)

    trainer = create_trainer(model, **kwargs)
    tables = tf.tables_initializer()
    model.sess.run(tables)
    model.sess.run(tf.global_variables_initializer())
    model.set_saver(tf.train.Saver())

    max_metric = 0
    last_improved = 0

    for epoch in range(epochs):

        trainer.train(ts, reporting_fns)
        test_metrics = trainer.test(vs, reporting_fns, phase='Valid')

        if epoch > 0 and epoch % n == 0 and epoch < epochs - 1:
            print(color('Running test', Colors.GREEN))
            trainer.test(es, reporting_fns, phase='Test')

        if do_early_stopping is False:
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif test_metrics[early_stopping_metric] > max_metric:
            last_improved = epoch
            max_metric = test_metrics[early_stopping_metric]
            print('New max %.3f' % max_metric)
            trainer.checkpoint()
            trainer.model.save(model_file)

        elif (epoch - last_improved) > patience:
            print(color('Stopping due to persistent failures to improve', Colors.RED))
            break

    if do_early_stopping is True:
        print('Best performance on max_metric %.3f at epoch %d' % (max_metric, last_improved))

    if es is not None:
        print(color('Reloading best checkpoint', Colors.GREEN))
        trainer.recover_last_checkpoint()
        trainer.test(es, reporting_fns, phase='Test')