Example #1
0
def transition_mask(vocab, span_type, s_idx, e_idx, pad_idx=None):
    """Create a mask to enforce span sequence transition constraints.

    Returns a Tensor with valid transitions as a 0 and invalid as a 1 for easy use with `masked_fill`
    """
    np_mask = transition_mask_np(vocab, span_type, s_idx, e_idx, pad_idx=pad_idx)
    return torch.from_numpy(np_mask) == 0
Example #2
0
def transition_mask(vocab, span_type, s_idx, e_idx, pad_idx=None):
    """Create a CRF Mask.

    Returns a mask with invalid moves as 0 and valid moves as 1.
    """
    mask = transition_mask_np(vocab, span_type, s_idx, e_idx, pad_idx).T
    inv_mask = (mask == 0).astype(np.float32)
    return tf.constant(mask), tf.constant(inv_mask)
Example #3
0
def transition_mask(vocab, span_type, s_idx, e_idx, pad_idx=None):
    """Create a CRF Mask.

    Returns a mask with invalid moves as 0 and valid moves as 1.
    """
    mask = transition_mask_np(vocab, span_type, s_idx, e_idx, pad_idx).T
    inv_mask = (mask == 0).astype(np.float32)
    return tf.constant(mask), tf.constant(inv_mask)
Example #4
0
def transition_mask(vocab, span_type, s_idx, e_idx, pad_idx):
    mask = transition_mask_np(vocab, span_type, s_idx, pad_idx)
    inv_mask = (mask == 0).astype(np.float32)
    return mask, inv_mask
Example #5
0
def transition_mask(vocab, span_type, s_idx, e_idx, pad_idx):
    mask = transition_mask_np(vocab, span_type, s_idx, pad_idx)
    inv_mask = (mask == 0).astype(np.float32)
    return mask, inv_mask