def __init__(self, config):
        print(
            "[TIME] --- time: {} ---, init model fusion head self attn".format(
                time.ctime(time.time())))
        super(RobertaForMultipleChoice_Fusion_Head_Dual_Attn,
              self).__init__(config)

        self.roberta = RobertaModel(config)
        self.transformer_mrc = Trans_Encoder_self_attn(n_layers=3,
                                                       n_head=12,
                                                       d_k=64,
                                                       d_v=64,
                                                       d_model=768,
                                                       d_inner=4096,
                                                       dropout=0.1)

        self.pooler = BertPooler(config)

        self.bn = torch.nn.BatchNorm1d(num_features=config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()
Example #2
0
    def __init__(self, config):
        print("[TIME] --- time: {} ---, init model fusion layer".format(
            time.ctime(time.time())))
        super(RobertaForMultipleChoice_Fusion_Layer, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.transformer_mrc = Trans_Encoder_layer(n_layers=3,
                                                   n_head=12,
                                                   d_k=64,
                                                   d_v=64,
                                                   d_model=768,
                                                   d_inner=4096,
                                                   dropout=0.1)

        self.pooler = BertPooler(config)

        self.weight = nn.Parameter(torch.randn(3, 4))
        self.softmax = nn.Softmax(dim=-1)

        self.bn = torch.nn.BatchNorm1d(num_features=config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()
Example #3
0
 def __init__(self, config):
     super(Roberta_Encoder, self).__init__(config)
     self.roberta = RobertaModel(config)
     self.init_weights()