def vit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs) model.default_cfg = default_cfgs['vit_large_patch16_224'] if pretrained: load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) return model
def vit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs) model.default_cfg = default_cfgs['vit_base_patch16_224'] if pretrained: load_pretrained( model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter) return model