Example #1
0
    def add_node(self, key):
        # print(np.array(key).shape)
        if self.gpu_capacity[0] >= self.capacity:
            # find the LRU entry
            old_index = int(np.argmin(self.lru))
            for action in range(self.num_actions):
                for successor in self.next_id[old_index][action].keys():
                    for s, a in self.prev_id[successor]:
                        if s == old_index:
                            self.prev_id[successor].remove((s, a))
                self.next_id[old_index][action] = dict()
            self.states[old_index] = key
            self.external_value[old_index] = np.full((self.num_actions,), np.nan)
            self.internal_value[old_index] = self.rmax * np.ones(self.num_actions)
            self.state_value_u[old_index] = np.nan
            self.state_value_v[old_index] = np.nan
            self.lru[old_index] = self.tm
            self.count[old_index] = 2
            self.prev_id[old_index] = []
            knn_cuda_fixmem.add(self.address, int(old_index), np.array(key))
            self.tm += 0.01
            self.newly_added[old_index] = True
            return old_index, True

        else:
            self.states[self.gpu_capacity[0]] = key
            self.lru[self.gpu_capacity[0]] = self.tm
            self.newly_added[self.gpu_capacity[0]] = True
            self.count[self.gpu_capacity[0]] = 2
            knn_cuda_fixmem.add(self.address, int(self.gpu_capacity[0]), np.array(key))
            self.gpu_capacity[0] += 1
            self.tm += 0.01

            return self.gpu_capacity[0] - 1, False
Example #2
0
 def update(self, indexes, z_new):
     self.log("update in buffer", self.gpu_capacity[0])
     assert len(indexes) == len(z_new), "{}{}".format(len(indexes), len(z_new))
     assert z_new.shape[1] == self.z_dim
     for i, ind in enumerate(indexes):
         self.states[ind] = z_new[i]
         knn_cuda_fixmem.add(self.address, int(ind), np.array(z_new[i]).squeeze())
Example #3
0
    def add_node(self, key):
        # print(np.array(key).shape)
        if self.curr_capacity >= self.capacity:
            # find the LRU entry
            old_index = np.argmin(self.lru)
            for successor in self.next_id[old_index]:
                for s, a in self.prev_id[successor]:
                    if s == old_index:
                        self.prev_id.remove((s, a))
            self.states[old_index] = key
            self.external_value[old_index] = -self.rmax * np.ones(
                self.num_actions)
            self.internal_value[old_index] = np.zeros(self.num_actions)
            self.state_value[old_index] = -self.rmax
            self.lru[old_index] = self.tm
            self.count[old_index] = 2
            self.prev_id = []
            knn_cuda_fixmem.add(self.address, old_index, np.array(key))
            self.tm += 0.01
            return old_index

        else:
            self.states[self.curr_capacity] = key
            self.lru[self.curr_capacity] = self.tm
            self.count[self.curr_capacity] = 2
            knn_cuda_fixmem.add(self.address, self.curr_capacity,
                                np.array(key))
            self.curr_capacity += 1
            self.tm += 0.01

            return self.curr_capacity - 1
Example #4
0
    def add(self, action, key, value, reward, done, brothers):
        buffer = self.ec_buffer[action]
        if buffer.curr_capacity >= buffer.capacity:
            # find the LRU entry
            index = np.argmin(buffer.lru)
            self.ec_buffer[action].prev_id[index] = []
            self.ec_buffer[action].internal_value[index] = 0
            for bro in self.ec_buffer[action].brothers[index]:
                self.ec_buffer[bro[1]].brothers[bro[0]].remove((index, action))
            self.ec_buffer[action].brothers[index] = []
        else:
            index = buffer.curr_capacity
            buffer.curr_capacity += 1

        buffer.states[index] = key
        for a in range(len(brothers)):
            if brothers[a] > 0:
                buffer.brothers[index].append((brothers[a], a))
                self.ec_buffer[a].brothers[brothers[a]].append((index, action))
        buffer.external_value[index] = value
        buffer.reward[index] = reward
        buffer.done[index] = done
        buffer.lru[index] = buffer.tm
        buffer.tm += 0.01
        # print("here")
        # print(action, index, buffer.capacity)
        # print(buffer.address)
        key = np.array(key, copy=True)
        # key = copy.deepcopy(key)
        # print(key.shape)
        knn_cuda_fixmem.add(buffer.address, index, key)

        return index
Example #5
0
    def add(self, key, external_value, internal_value):
        # print(np.array(key).shape)
        if self.curr_capacity >= self.capacity:
            # find the LRU entry
            old_index = np.argmin(self.lru)
            self.states[old_index] = key
            self.external_value[old_index] = external_value
            self.internal_value[old_index] = internal_value
            self.lru[old_index] = self.tm
            self.count[old_index] = 2
            knn_cuda_fixmem.add(self.address, int(old_index), np.array(key))

        else:
            self.states[self.curr_capacity] = key
            self.external_value[self.curr_capacity] = external_value
            self.internal_value[self.curr_capacity] = internal_value
            self.lru[self.curr_capacity] = self.tm
            self.count[self.curr_capacity] = 2
            knn_cuda_fixmem.add(self.address, int(self.curr_capacity), np.array(key))
            self.curr_capacity += 1
        self.tm += 0.01
Example #6
0
 def add(self, key, value_decay, action=-1):
     # print(np.array(key).shape)
     if self.curr_capacity >= self.capacity:
         # find the LRU entry
         old_index = np.argmin(self.lru)
         self.states[old_index] = key
         self.q_values_decay[old_index] = value_decay
         self.lru[old_index] = self.tm
         self.count[old_index] = 2
         knn_cuda_fixmem.add(self.address, old_index, np.array(key))
         if action >= 0:
             self.best_action[old_index, action] = 1
     else:
         self.states[self.curr_capacity] = key
         self.q_values_decay[self.curr_capacity] = value_decay
         self.lru[self.curr_capacity] = self.tm
         self.count[self.curr_capacity] = 2
         knn_cuda_fixmem.add(self.address, self.curr_capacity, np.array(key))
         if action >= 0:
             self.best_action[self.curr_capacity, action] = 1
         self.curr_capacity += 1
     self.tm += 0.01
Example #7
0
    def add_node(self, key, knn_dist=[], knn_ind=[]):

        # print(np.array(key).shape)
        if self.curr_capacity >= self.capacity:
            # print("Currently not allow buffer to delete old node!")
            # raise NotImplementedError
            # find the LRU entry
            old_index = int(np.argmin(self.lru))
            for action in range(self.num_actions):
                for successor in self.next_id[old_index][action].keys():
                    for s, a in self.prev_id[successor]:
                        if s == old_index:
                            self.prev_id[successor].remove((s, a))
                self.next_id[old_index][action] = dict()
            self.states[old_index] = key
            self.external_value[old_index] = np.full((self.num_actions,), np.nan)
            self.internal_value[old_index] = self.rmax * np.ones(self.num_actions)
            self.state_value_u[old_index] = np.nan
            self.state_value_v[old_index] = np.nan
            self.lru[old_index] = self.tm
            self.count[old_index] = 2
            self.prev_id[old_index] = []
            knn_cuda_fixmem.add(self.address, int(old_index), np.array(key))
            self.tm += 0.01
            self.newly_added[old_index] = True
            return old_index, True

        else:
            self.states[self.curr_capacity] = key
            self.lru[self.curr_capacity] = self.tm
            self.newly_added[self.curr_capacity] = True
            self.count[self.curr_capacity] = 2
            knn_cuda_fixmem.add(self.address, int(self.curr_capacity), np.array(key))
            self.curr_capacity += 1
            self.tm += 0.01

            return self.curr_capacity - 1, False
Example #8
0
    def add_node(self, key, knn_dist, knn_ind):
        knn_dist = np.array(knn_dist).reshape(-1).tolist()
        knn_ind = np.array(knn_ind).reshape(-1).tolist()
        # print(np.array(key).shape)
        if self.curr_capacity >= self.capacity:
            # find the LRU entry

            old_index = int(
                np.argmin(self.density + 2 * self.rmax * self.newly_added +
                          self.lru * 0.1))
            self.log("density based cache index:", old_index, "density:",
                     self.density[old_index])
            # old_index = np.random.randint(0,self.capacity)

            # deal with model
            for action in range(self.num_actions):
                for successor in self.next_id[old_index][action].keys():
                    for s, a in self.prev_id[successor]:
                        if s == old_index:
                            self.prev_id[successor].remove((s, a))
                self.next_id[old_index][action] = dict()
            self.prev_id[old_index] = []
            # deal with neighbour
            for neighbour in self.neighbour_backward[old_index]:
                place = np.where(
                    np.array(self.neighbour_forward[neighbour]) ==
                    old_index)[0]
                if len(place) == 0:
                    print("backward", old_index,
                          self.neighbour_backward[old_index])
                    print("forward", neighbour,
                          self.neighbour_forward[neighbour])
                    raise SyntaxError

                assert len(place) == 1, place

                place = int(place)
                self.neighbour_forward[neighbour].pop(place)
                self.neighbour_dist_forward[neighbour].pop(place)
                # print(self.neighbour_dist_forward[neighbour])
                self.compute_density(neighbour)
            for neighbour in self.neighbour_forward[old_index]:
                self.neighbour_backward[neighbour].remove(old_index)

            # clean buffer and then treat it like a new one
            self.density[old_index] = self.rmax
            self.external_value[old_index] = np.full((self.num_actions, ),
                                                     np.nan)
            self.internal_value[old_index] = self.rmax * np.ones(
                self.num_actions)
            self.state_value_u[old_index] = np.nan
            self.state_value_v[old_index] = np.nan
            self.neighbour_forward[old_index] = []
            self.neighbour_dist_forward[old_index] = []
            self.neighbour_backward[old_index] = []
            new_index = old_index

        else:
            new_index = self.curr_capacity
            self.curr_capacity += 1

        if new_index in knn_ind:
            place = np.where(np.array(new_index) == knn_ind)[0]

            assert len(place) == 1, place
            place = int(place)
            knn_ind.pop(place)
            knn_dist.pop(place)
        self.neighbour_forward[new_index] = knn_ind
        self.neighbour_dist_forward[new_index] = knn_dist
        # print(self.neighbour_dist_forward[new_index])
        self.compute_density(new_index)
        # print(knn_ind,knn_dist)
        # for x in zip([knn_ind, knn_dist]):
        #     print(x)
        for ind, dist in zip(knn_ind, knn_dist):
            self.neighbour_backward[ind].append(new_index)
            if len(
                    self.neighbour_forward[ind]
            ) < self.knn * 4 and new_index not in self.neighbour_forward[ind]:
                self.neighbour_forward[ind].append(new_index)
                self.neighbour_dist_forward[ind].append(dist)
                # print(self.neighbour_dist_forward[ind])
                self.compute_density(ind)
                self.neighbour_backward[new_index].append(ind)
            else:
                dist_max = np.max(self.neighbour_dist_forward[ind])
                ind_max = int(np.argmax(self.neighbour_dist_forward[ind]))

                if dist_max > dist:
                    ind_tmp = self.neighbour_forward[ind][ind_max]
                    try:
                        self.neighbour_backward[ind_tmp].remove(ind)
                    except ValueError:

                        print(ind_tmp, self.neighbour_forward[ind])
                        print(ind, self.neighbour_backward[ind_tmp])

                        raise ValueError
                    self.neighbour_forward[ind][ind_max] = new_index
                    self.neighbour_dist_forward[ind][ind_max] = dist
                    # print(self.neighbour_dist_forward[ind])
                    self.compute_density(ind)
                    self.neighbour_backward[new_index].append(ind)

        self.states[new_index] = key
        self.lru[new_index] = self.tm
        self.newly_added[new_index] = True
        self.count[new_index] = 2
        knn_cuda_fixmem.add(self.address, int(new_index), np.array(key))
        self.tm += 0.01
        return new_index, False
Example #9
0
k = 4
for n in range(4):
    cur_time = time.time()
    query = np.random.rand(query_size, c).astype(np.float32)

    reference = np.random.rand(dict_size, c).astype(np.float32)
    address = knn.allocate(dict_size, c, query_max, k)
    # print(address, address.dtype)
    # address = copy.deepcopy(address)
    # print(address,address.dtype)
    # print("??????")
    print(address)
    for i in range(capacity):
        # print(i,np.array(reference[i]).shape)
        # print(i)
        knn.add(address, i, reference[i])
    print("add time:", time.time() - cur_time)
    cur_time = time.time()
    # print(address)
    # # Index is 1-based
    dist, ind = knn.knn(address, query.reshape(-1, c), k, capacity)

    print(ind.shape, "time:", time.time() - cur_time)
    print(np.transpose(ind))
    print(np.transpose(dist))
    # cur_time = time.time()
    tree = KDTree(reference[:capacity])
    print("build tree time:", time.time() - cur_time)
    cur_time = time.time()
    dist, ind = tree.query(query, k=k)