def get_env_type(args): logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) env_id = args.env if args.env_type is not None: return args.env_type, env_id # Re-parse the gym registry, since we could have new envs since last time. for env in gym.envs.registry.all(): env_type = env.entry_point.split(':')[0].split('.')[-1] _game_envs[env_type].add(env.id) # This is a set so add is idempotent if env_id in _game_envs.keys(): env_type = env_id env_id = [g for g in _game_envs[env_type]][0] else: env_type = None for g, e in _game_envs.items(): if env_id in e: env_type = g break if ':' in env_id: env_type = re.sub(r':.*', '', env_id) assert env_type is not None, 'env_id {} is not recognized in env types'.format( env_id, _game_envs.keys()) return env_type, env_id
def setup_logger(name, log_file, level=logging.INFO): """Function setup as many loggers as you want""" handler = logging.FileHandler(log_file) handler.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(handler) return logger
def build_env(args): logger = logging.getLogger() coloredlogs.install(level='DEBUG', fmt='%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s') logger.setLevel(logging.DEBUG) ncpu = multiprocessing.cpu_count() if sys.platform == 'darwin': ncpu //= 2 nenv = args.num_env or ncpu alg = args.alg seed = args.seed env_type, env_id = get_env_type(args) if env_type in {'atari', 'retro'}: if alg == 'deepq': env = make_env(env_id, env_type, seed=seed, wrapper_kwargs={'frame_stack': True}) elif alg == 'trpo_mpi': env = make_env(env_id, env_type, seed=seed) else: frame_stack_size = 4 env = make_vec_env(env_id, env_type, nenv, seed, gamestate=args.gamestate, reward_scale=args.reward_scale) env = VecFrameStack(env, frame_stack_size) else: # TODO: Ensure willuse GPU when sent to SLURM (Add as a command-line argument) config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) config.gpu_options.allow_growth = True get_session(config=config) flatten_dict_observations = alg not in {'her'} env = make_vec_env(env_id, env_type, args.num_env or 1, seed, reward_scale=args.reward_scale, flatten_dict_observations=flatten_dict_observations) if env_type == 'mujoco': env = VecNormalize(env, use_tf=True) if env_id == "MsPacmanNoFrameskip-v4": env = super_simple_dqn_wrapper.PacmanClearTheBoardRewardsWrapper(env) env = super_simple_dqn_wrapper.FearDeathWrapper(env) elif env_id == "FreewayNoFrameskip-v4": env = super_simple_dqn_wrapper.AltFreewayRewardsWrapper(env) env = super_simple_dqn_wrapper.FreewayUpRewarded(env) env.ale.setDifficulty(1) elif env_id == "JamesbondNoFrameskip-v4": env = super_simple_dqn_wrapper.FearDeathWrapper(env) return env
def train(args, extra_args): logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) env_type, env_id = get_env_type(args) #logger.info('env_type: {}'.format(env_type)) total_timesteps = int(args.num_timesteps) seed = args.seed learn = get_learn_function(args.alg) alg_kwargs = get_learn_function_defaults(args.alg, env_type) alg_kwargs.update(extra_args) env = build_highlights_env(args) if args.save_video_interval != 0: env = VecVideoRecorder( env, osp.join(logger.get_dir(), "videos"), record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length) if args.network: alg_kwargs['network'] = args.network else: if alg_kwargs.get('network') is None: alg_kwargs['network'] = get_default_network(env_type) #logger.info('Training {} on {}:{} with arguments \n{}'.format(args.alg, env_type, env_id, alg_kwargs)) model = learn(env=env, seed=seed, total_timesteps=total_timesteps, load_path=args.load_path, save_path=args.save_path, **alg_kwargs) #print("Returned act: ") #print(model) return model, env
def make_logger(name, filename, stream_level=logging.INFO, file_level=logging.DEBUG): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(filename) fh.setLevel(file_level) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(stream_level) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) logger.addHandler(ch)
def main(args): # configure logger, disable logging in child MPI processes (with rank > 0) logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) # Use parser for specifying agent reward structure arg_parser = highlights_arg_parser() args, unknown_args = arg_parser.parse_known_args(args) extra_args = parse_cmdline_kwargs(unknown_args) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: rank = 0 # configure_logger(args.log_path) else: rank = MPI.COMM_WORLD.Get_rank() configure_logger(args.log_path, format_strs=[]) # Set up saving to a single, logical location on folder above the code base to avoid # Swelling the size of the code base with test outputs # get current date and time for default data output folder name if args.save_path is None: # datetime object containing current date and time now = datetime.now() #logger.info("now =" + str(now)) # month_day_YY_H_M_S dt_string = now.strftime("%b%d_%Y_%H_%M_") dt_string = dt_string + str(args.training_wrapper) #logger.info("date and time =" + str(dt_string)) args.save_path = dt_string # get current directory path = os.getcwd() # use parent dir to save data, so we can keep the current folder small and portable directory = os.path.abspath(os.path.join(path, os.pardir)) directory = os.path.abspath(os.path.join(directory, os.pardir)) directory = os.path.join(directory, 'train_agent_data') directory = os.path.join(directory, args.save_path) os.mkdir(directory) directory2 = os.path.join(directory, args.save_path) args.save_path = directory2 #logger.info("Now save path is: ") #logger.info(args.save_path) args.log_path = os.path.join(directory, 'logs') os.mkdir(args.log_path) #logger.info("Now log path is: ") #logger.info(args.log_path) if args.save_path is not None and rank == 0: #logger.info("Inside custom run file and about to save model") save_path = osp.expanduser(args.save_path) args.log_path = os.path.join(directory, 'logs') model, env = train(args, extra_args) # Now save Model #logger.info("Model is: ") #logger.info(model) model.save(save_path) env.close() return model
def build_highlights_env(args): logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) ncpu = multiprocessing.cpu_count() if sys.platform == 'darwin': ncpu //= 2 nenv = args.num_env or ncpu alg = args.alg seed = args.seed env_type = 'atari' env_id = args.env # Default alg is dqn, so make initial normal dqn environment env = make_env(env_id, env_type, seed=seed, wrapper_kwargs={'frame_stack': True}) #logger.info("About to check for training wrapper") # Now switch on the training-based args to add wrappers ass needed if args.training_wrapper == 'pacman_fear_only': env = super_simple_dqn_wrapper.fear_only(env) #logger.info("Training wrapper: " + str(args.training_wrapper)) if args.training_wrapper == 'pacman_power_pill_only': env = super_simple_dqn_wrapper.pacman_power_pill_only(env) #logger.info("Training wrapper: " + str(args.training_wrapper)) if args.training_wrapper == 'pacman_normal_pill_only': env = super_simple_dqn_wrapper.pacman_normal_pill_only(env) if args.training_wrapper == 'pacman_normal_pill_power_pill_only': env = super_simple_dqn_wrapper.pacman_normal_pill_power_pill_only(env) if args.training_wrapper == 'pacman_normal_pill_fear_only': env = super_simple_dqn_wrapper.pacman_normal_pill_fear_only(env) if args.training_wrapper == 'pacman_normal_pill_in_game': env = super_simple_dqn_wrapper.pacman_normal_pill_in_game(env) if args.training_wrapper == 'pacman_power_pill_fear_only': env = super_simple_dqn_wrapper.pacman_power_pill_fear_only(env) if args.training_wrapper == 'pacman_power_pill_in_game': env = super_simple_dqn_wrapper.pacman_power_pill_in_game(env) if args.training_wrapper == 'pacman_fear_in_game': env = super_simple_dqn_wrapper.pacman_fear_in_game(env) # training options for freeway (also specifies the environment) if args.training_wrapper == 'freeway_up_only': env = super_simple_dqn_wrapper.freeway_up_only(env) if args.training_wrapper == 'freeway_down_only': env = super_simple_dqn_wrapper.freeway_down_only(env) if args.training_wrapper == 'freeway_up_down': env = super_simple_dqn_wrapper.freeway_up_down(env) # training options for asterix (also specifies the environment) if args.training_wrapper == 'asterix_fear_only': env = super_simple_dqn_wrapper.fear_only(env) if args.training_wrapper == 'asterix_bonus_life_in_game': env = super_simple_dqn_wrapper.asterix_bonus_life_in_game(env) if args.training_wrapper == 'asterix_fear_in_game': env = super_simple_dqn_wrapper.asterix_fear_in_game(env) # training options for alien (also specifies the environment) if args.training_wrapper == 'alien_fear_only': env = super_simple_dqn_wrapper.fear_only(env) if args.training_wrapper == 'alien_pulsar_only': env = super_simple_dqn_wrapper.alien_pulsar_only(env) if args.training_wrapper == 'alien_eggs_only': env = super_simple_dqn_wrapper.alien_eggs_only(env) if args.training_wrapper == 'alien_eggs_pulsar_only': env = super_simple_dqn_wrapper.alien_eggs_pulsar_only(env) if args.training_wrapper == 'alien_eggs_fear_only': env = super_simple_dqn_wrapper.alien_eggs_fear_only(env) if args.training_wrapper == 'alien_eggs_in_game': env = super_simple_dqn_wrapper.alien_eggs_in_game(env) if args.training_wrapper == 'alien_pulsar_fear_only': env = super_simple_dqn_wrapper.alien_pulsar_fear_only(env) if args.training_wrapper == 'alien_pulsar_in_game': env = super_simple_dqn_wrapper.alien_pulsar_in_game(env) if args.training_wrapper == 'alien_fear_in_game': env = super_simple_dqn_wrapper.alien_fear_in_game(env) return env
def learn(env, network, seed=None, lr=5e-4, total_timesteps=1000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, save_path=None, **network_kwargs): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. batch_size: int size of a batch sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ logger = logging.getLogger() coloredlogs.install( level='DEBUG', fmt= '%(asctime)s,%(msecs)03d %(filename)s[%(process)d] %(levelname)s %(message)s' ) logger.setLevel(logging.DEBUG) # DATAVAULT: Set up list of action meanings and two lists to store episode # and total sums for each possible action in the list. action_names = env.unwrapped.get_action_meanings() action_episode_sums = [] action_total_sums = [] for x in range(len(action_names)): action_episode_sums.append(0) action_total_sums.append(0) # And obviously, you need a datavault item dv = DataVault() # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) #DATAVAULT: This is where you usually want to scrape data - in the timestep loop for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True # if environment is pacman, limit moves to four directions name = env.unwrapped.spec.id if name == "MsPacmanNoFrameskip-v4": while True: step_return = act(np.array(obs)[None], update_eps=update_eps, **kwargs) action = step_return[0][0] env_action = action q_values = np.squeeze(step_return[1]) # test for break condition if 1 <= action <= 4: break else: step_return = act(np.array(obs)[None], update_eps=update_eps, **kwargs) action = step_return[0][0] q_values = np.squeeze(step_return[1]) env_action = action reset = False new_obs, rew, done, info = env.step(env_action) # DATAVAULT: after each step, we push the information out to the datavault lives = env.ale.lives() #store_data(self, action, action_name, action_episode_sums, action_total_sums, reward, done, info, lives, q_values, observation, mean_reward): action_episode_sums, action_total_sums = dv.store_data( action, action_names[action], action_episode_sums, action_total_sums, rew, done, info, lives, q_values, new_obs, saved_mean_reward) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() if (len(episode_rewards[-101:-1]) > 0): mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) else: mean_100ep_reward = 0 num_episodes = len(episode_rewards) if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) load_variables(model_file) dv.make_dataframes() print("Save path is: ") print(save_path) # use parent dir to save data, so we can keep the current folder small and portable directory = os.path.abspath(os.path.join(save_path, os.pardir)) csv_path = os.path.join(directory, 'CSVs') os.mkdir(csv_path) dv.df_to_csv(csv_path) return act