cov_all_stress = np.cov(points_all_stress) cov_all_reg = np.cov(points_all_reg) cov_all_stim = np.cov(points_all_stim) mean_vec_all_stress = [np.nanmean(norm_ibi_all_stress_mean),np.nanmean(norm_pupil_all_stress_mean)] mean_vec_all_reg = [np.nanmean(norm_ibi_all_reg_mean),np.nanmean(norm_pupil_all_reg_mean)] mean_vec_all_stim = [np.nanmean(norm_ibi_all_stim_mean), np.nanmean(norm_pupil_all_stim_mean)] cmap_stress = mpl.cm.autumn cmap_reg = mpl.cm.winter cmap_stim = mpl.cm.gray plt.figure() #plt.plot(ibi_all_stress_mean,pupil_all_stress_mean,'ro',label='Stress') for i in range(0,len(ibi_all_stress_mean)): plt.plot(norm_ibi_all_stress_mean[i],norm_pupil_all_stress_mean[i],color=cmap_stress(i/float(len(ibi_all_stress_mean))),marker='o') plot_cov_ellipse(cov_all_stress,mean_vec_all_stress,fc='r',ec='None',a=0.2) #plt.plot(ibi_all_reg_before_mean,pupil_all_reg_before_mean,'bo',label='Reg Before') for i in range(0,len(ibi_all_reg_mean)): plt.plot(norm_ibi_all_reg_mean[i],norm_pupil_all_reg_mean[i],color=cmap_reg(i/float(len(ibi_all_reg_mean))),marker='o') plot_cov_ellipse(cov_all_reg,mean_vec_all_reg,fc='b',ec='None',a=0.2) for i in range(0,len(ibi_all_stress_mean_stim)): plt.plot(norm_ibi_all_stim_mean[i],norm_pupil_all_stim_mean[i],color=cmap_stim(i/float(len(ibi_all_stress_mean_stim))),marker='o') plot_cov_ellipse(cov_all_stim,mean_vec_all_stim,fc='k',ec='None',a=0.2) #plt.legend() plt.xlabel('Mean Trial IBI (s)') plt.ylabel('Mean Trial PD (AU)') plt.title('All Trials') sm_reg = plt.cm.ScalarMappable(cmap=cmap_reg, norm=plt.Normalize(vmin=0, vmax=1)) # fake up the array of the scalar mappable. Urgh... sm_reg._A = [] cbar = plt.colorbar(sm_reg,ticks=[0,1], orientation='vertical')
points_all_stress = np.array([norm_ibi_all_stress_mean,norm_pupil_all_stress_mean]) points_all_reg_before = np.array([norm_ibi_all_reg_before_mean,norm_pupil_all_reg_before_mean]) cov_all_stress = np.cov(points_all_stress) cov_all_reg_before = np.cov(points_all_reg_before) mean_vec_all_stress = [np.nanmean(norm_ibi_all_stress_mean),np.nanmean(norm_pupil_all_stress_mean)] mean_vec_all_reg_before = [np.nanmean(norm_ibi_all_reg_before_mean),np.nanmean(norm_pupil_all_reg_before_mean)] cmap_stress = mpl.cm.autumn cmap_reg_before = mpl.cm.winter plt.figure() #plt.plot(ibi_all_stress_mean,pupil_all_stress_mean,'ro',label='Stress') for i in range(0,len(ibi_all_stress_mean)): plt.plot(norm_ibi_all_stress_mean[i],norm_pupil_all_stress_mean[i],color=cmap_stress(i/float(len(ibi_all_stress_mean))),marker='o') plot_cov_ellipse(cov_all_stress,mean_vec_all_stress,fc='r',ec='None',a=0.2) #plt.plot(ibi_all_reg_before_mean,pupil_all_reg_before_mean,'bo',label='Reg Before') for i in range(0,len(ibi_all_reg_before_mean)): plt.plot(norm_ibi_all_reg_before_mean[i],norm_pupil_all_reg_before_mean[i],color=cmap_reg_before(i/float(len(ibi_all_reg_before_mean))),marker='o') plot_cov_ellipse(cov_all_reg_before,mean_vec_all_reg_before,fc='b',ec='None',a=0.2) #plt.legend() plt.xlabel('Mean Trial IBI (s)') plt.ylabel('Mean Trial PD (AU)') plt.title('All Trials') sm_reg_before = plt.cm.ScalarMappable(cmap=cmap_reg_before, norm=plt.Normalize(vmin=0, vmax=1)) # fake up the array of the scalar mappable. Urgh... sm_reg_before._A = [] cbar = plt.colorbar(sm_reg_before,ticks=[0,1], orientation='vertical') cbar.ax.set_xticklabels(['Early', 'Late']) # horizontal colorbar sm_stress = plt.cm.ScalarMappable(cmap=cmap_stress, norm=plt.Normalize(vmin=0, vmax=1)) # fake up the array of the scalar mappable. Urgh...