Example #1
0
 def __init__(self,
              input_dim=None,
              hidden_dim=200,
              output_dim=100,
              batch_size=1,
              p_dropout=0.2,
              num_layers=2):
     super(LSTMModel, self).__init__()
     self.hidden_dim = hidden_dim
     self.batch_size = batch_size
     self.bidirectional = True
     self.num_layers = num_layers
     self.bidir_mult = 2 if self.bidirectional else 1
     self.dimension_mult = self.num_layers * self.bidir_mult
     # The LSTM takes sequences of spectrograms/MFCCs as inputs, and outputs hidden states
     # with dimensionality hidden_dim.
     self.lstm = to_gpu(
         nn.LSTM(input_dim,
                 hidden_dim,
                 bidirectional=self.bidirectional,
                 num_layers=self.num_layers,
                 dropout=p_dropout))
     self.dropout_1 = nn.Dropout(p_dropout)
     # The linear layer that maps from hidden state space to tag space
     self.hidden2tag = to_gpu(
         nn.Linear(hidden_dim * self.bidir_mult, output_dim))
     self.reset_hidden()
 def __getitem__(self, idx):
     if idx < self.batches:
         x = to_gpu(torch.randn(self.x_shape))
         y = to_gpu(self.model(Variable(x)).data)
         return (x, y)
     else:
         raise StopIteration()
Example #3
0
 def init_hidden(self, batch_size=None):
     if batch_size is None:
         batch_size = self.batch_size
     # Before we've done anything, we dont have any hidden state.
     # Refer to the Pytorch documentation to see exactly
     # why they have this dimensionality.
     # The axes semantics are (num_layers, minibatch_size, hidden_dim)
     return (autograd.Variable(
         to_gpu(
             torch.zeros(self.dimension_mult, batch_size,
                         self.hidden_dim))),
             autograd.Variable(
                 to_gpu(
                     torch.zeros(self.dimension_mult, batch_size,
                                 self.hidden_dim))))
Example #4
0
    def forward(self, last_action=None, last_action_pos=None):
        '''
        One step of the RNN model
        :param enc_output: batch x z_size, so don't support sequences
        :param last_action: batch of ints, all equaling None for first step
        :param last_action_pos: ignored, used by the attention decoder, here just to get the signature right
        :return:
        '''

        if self.hidden is None:  # first step after reset
            # need to do it here as batch size might be different for each sequence
            self.hidden = self.init_hidden(batch_size=self.batch_size)
            self.one_hot_action = to_gpu(
                torch.zeros(self.batch_size, self.output_feature_size))

        encoded = self.encode(self.enc_output, last_action)

        # copy the latent state to length of sequence, instead of sampling inputs
        embedded = F.relu(self.fc_input(self.batch_norm(encoded))) \
            .view(self.batch_size, 1, self.hidden_n) \
            .repeat(1, self.max_seq_length, 1)
        embedded = self.dropout_1(embedded)
        # run the GRU on it
        out_3, self.hidden = self.gru_1(embedded, self.hidden)
        # tmp has dim (batch_size*seq_len)xhidden_n, so we can apply the linear transform to it
        tmp = self.dropout_2(out_3.contiguous().view(-1, self.hidden_n))
        out = self.fc_out(tmp).view(self.batch_size, self.max_seq_length,
                                    self.output_feature_size)

        # just return the logits
        #self.hidden = None
        return out  #, hidden_1
Example #5
0
    def encode(self, x):
        '''

        :param x: a numpy array batch x seq x feature
        :return:
        '''
        out, hidden = self.forward(to_gpu(Variable(FloatTensor(x))))
        return out.data.cpu().numpy()
 def gen():
     iter = self.iterable.__iter__()
     while True:
         # TODO: cast to float earlier?
         x = to_gpu(next(iter).float())
         yield (x, x)
Example #7
0
 def init_hidden(self, batch_size):
     h1 = Variable(to_gpu(
         torch.zeros(self.dimension_mult, batch_size, self.hidden_n)),
                   requires_grad=False)
     return h1
Example #8
0
 def init_hidden(self, batch_size):
     # NOTE: assume only 1 layer no bi-direction
     h1 = Variable(to_gpu(
         torch.zeros(self.num_layers, batch_size, self.hidden_n)),
                   requires_grad=False)
     return h1