Example #1
0
    def forward(self, net, batched_inputs, reuse=None):
        with tf.variable_scope("AddBBoxesSizeInfoV2", reuse=reuse):
            C = btf.channel(net)
            bboxes = self.parent.t_proposal_boxes

            with tf.name_scope("trans_bboxes"):
                _, H, W, _ = btf.combined_static_and_dynamic_shape(
                    batched_inputs[IMAGE])
                bboxes = odb.tfrelative_boxes_to_absolutely_boxes(bboxes, W, H)
                bymin, bxmin, bymax, bxmax = tf.unstack(bboxes, axis=-1)
                bh = bymax - bymin
                bw = bxmax - bxmin
                br0 = bh / (bw + 1e-8)
                br1 = bw / (bh + 1e-8)
                bboxes = tf.stack([bh, bw, br0, br1], axis=-1)
                B, BN, BC = btf.combined_static_and_dynamic_shape(bboxes)
                bboxes = tf.reshape(bboxes, [B * BN, BC])
                bboxes = tf.stop_gradient(bboxes)

            bboxes = slim.fully_connected(bboxes,
                                          C * 2,
                                          activation_fn=self.activation_fn,
                                          normalizer_fn=self.normalizer_fn,
                                          normalizer_params=self.norm_params)
            bboxes = slim.fully_connected(bboxes,
                                          C * 2,
                                          activation_fn=None,
                                          normalizer_fn=None)
            gamma = bboxes[..., :C]
            beta = bboxes[..., C:]
            net = wnnl.group_norm_v2(net, gamma, beta)
            return net
Example #2
0
 def _get_ground_truth(self, net):
     map_shape = btf.combined_static_and_dynamic_shape(net)
     output = tfop.hr_net_encode(
         keypoints=self.gt_keypoints,
         output_size=map_shape[1:3],
         glength=self.gt_length,
         gaussian_delta=self.cfg.OPENPOSE_GAUSSIAN_DELTA)
     gt_conf_maps = output[0]
     gt_indexs = output[1]
     wsummary.feature_map_summary(gt_conf_maps,
                                  "gt_conf_maps",
                                  max_outputs=5)
     if self.cfg.USE_LOSS_MASK:
         B, H, W, _ = btf.combined_static_and_dynamic_shape(gt_conf_maps)
         image = tf.zeros([B, H, W, 1])
         mask = odtl.batch_fill_bboxes(image,
                                       self.gt_boxes,
                                       v=1.0,
                                       length=self.gt_length,
                                       H=H,
                                       W=W,
                                       relative_coord=True)
         conf_mask = mask
         tf.summary.image("loss_mask", mask, max_outputs=5)
     else:
         conf_mask = None
     return gt_conf_maps, gt_indexs, conf_mask
Example #3
0
def decode_boxes(boxes, regs, prio_scaling=[0.1, 0.1, 0.2, 0.2]):
    assert btf.channel(boxes) == btf.channel(regs), "box channel must be 4."

    l_shape = btf.combined_static_and_dynamic_shape(boxes)
    r_shape = btf.combined_static_and_dynamic_shape(regs)

    ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
    cy = (ymin + ymax) / 2.
    cx = (xmin + xmax) / 2.
    h = ymax - ymin
    w = xmax - xmin

    if regs.get_shape().ndims == 1:
        cy = regs[0] * h * prio_scaling[0] + cy
        cx = regs[1] * w * prio_scaling[1] + cx
        h = h * tf.exp(regs[2] * prio_scaling[2])
        w = w * tf.exp(regs[3] * prio_scaling[3])
    else:
        regs = tf.reshape(regs, (-1, r_shape[-1]))
        regs0, regs1, regs2, regs3 = tf.unstack(regs, axis=1)
        cy = regs0 * h * prio_scaling[0] + cy
        cx = regs1 * w * prio_scaling[1] + cx
        h = h * tf.exp(regs2 * prio_scaling[2])
        w = w * tf.exp(regs3 * prio_scaling[3])

    ymin = cy - h / 2.
    xmin = cx - w / 2.
    ymax = cy + h / 2.
    xmax = cx + w / 2.
    bboxes = tf.stack([ymin, xmin, ymax, xmax], axis=0)
    bboxes = tf.transpose(bboxes, perm=[1, 0])
    bboxes = tf.reshape(bboxes, l_shape)
    bboxes = tf.clip_by_value(bboxes, 0.0, 1.0)
    return bboxes
Example #4
0
 def _get_ground_truth(self):
     map_shape = btf.combined_static_and_dynamic_shape(self.pred_maps[0][0])
     output = tfop.open_pose_encode(
         keypoints=self.gt_keypoints,
         output_size=map_shape[1:3],
         glength=self.gt_length,
         keypoints_pair=self.cfg.POINTS_PAIRS,
         l_delta=self.cfg.OPENPOSE_L_DELTA,
         gaussian_delta=self.cfg.OPENPOSE_GAUSSIAN_DELTA)
     gt_conf_maps = output[0]
     gt_paf_maps = output[1]
     wsummary.feature_map_summary(gt_conf_maps,
                                  "gt_conf_maps",
                                  max_outputs=5)
     wsummary.feature_map_summary(gt_paf_maps, "gt_paf_maps", max_outputs=5)
     if self.cfg.USE_LOSS_MASK:
         B, H, W, _ = btf.combined_static_and_dynamic_shape(gt_paf_maps)
         image = tf.zeros([B, H, W, 1])
         mask = odtl.batch_fill_bboxes(image,
                                       self.gt_boxes,
                                       v=1.0,
                                       length=self.gt_length,
                                       H=H,
                                       W=W,
                                       relative_coord=True)
         conf_mask = mask
         paf_mask = mask
         tf.summary.image("bboxes_mask", mask, max_outputs=5)
     else:
         conf_mask = None
         paf_mask = None
     return gt_paf_maps, gt_conf_maps, paf_mask, conf_mask
Example #5
0
 def fn1(boxes, l):
     nr, _ = btf.combined_static_and_dynamic_shape(boxes)
     boxes = boxes[:l, :]
     boxes, keep_pos = remove_bboxes_by_overlap(boxes, None, threshold)
     n_nr, _ = btf.combined_static_and_dynamic_shape(boxes)
     padding_nr = nr - n_nr
     boxes = tf.pad(boxes, [[0, padding_nr], [0, 0]])
     keep_pos = tf.pad(keep_pos, [[0, padding_nr]])
     return boxes, keep_pos, n_nr
Example #6
0
    def forward(self, net, batched_inputs, reuse=None):
        with tf.variable_scope("AddBBoxesSizeInfo"):
            reg_net = net
            shape = wmlt.combined_static_and_dynamic_shape(net)
            C = shape[-1]
            K = 4
            with tf.variable_scope("pos_embedding"):
                pos_embs_shape = [1, shape[1], shape[2], K * C]
                pos_embedding = tf.get_variable(
                    "pos_embs",
                    shape=pos_embs_shape,
                    dtype=tf.float32,
                    initializer=tf.random_normal_initializer(stddev=0.02))
            bboxes = self.parent.t_proposal_boxes

            with tf.name_scope("trans_bboxes"):
                _, H, W, _ = btf.combined_static_and_dynamic_shape(
                    batched_inputs[IMAGE])
                bboxes = odb.tfrelative_boxes_to_absolutely_boxes(bboxes, W, H)
                bymin, bxmin, bymax, bxmax = tf.unstack(bboxes, axis=-1)
                bh = bymax - bymin
                bw = bxmax - bxmin
                br0 = bh / (bw + 1e-8)
                br1 = bw / (bh + 1e-8)
                bboxes = tf.stack([bh, bw, br0, br1], axis=-1)
                B, BN, BC = btf.combined_static_and_dynamic_shape(bboxes)
                bboxes = tf.reshape(bboxes, [B * BN, BC])
                bboxes = tf.stop_gradient(bboxes)

            bboxes = slim.fully_connected(bboxes,
                                          C,
                                          activation_fn=self.activation_fn,
                                          normalizer_fn=self.normalizer_fn,
                                          normalizer_params=self.norm_params)
            bboxes = slim.fully_connected(bboxes,
                                          K * C,
                                          activation_fn=tf.nn.sigmoid,
                                          normalizer_fn=None)
            pos_embedding = tf.reshape(bboxes,
                                       [B * BN, 1, 1, K * C]) * pos_embedding
            pos_embedding = tf.layers.dense(
                pos_embedding,
                C,
                kernel_initializer=tf.truncated_normal_initializer(
                    stddev=0.02))
            cls_net = wnnl.non_local_blockv4(net,
                                             scope=f"non_local",
                                             normalizer_fn=wnnl.evo_norm_s0,
                                             activation_fn=None,
                                             n_head=4,
                                             weighed_sum=False,
                                             pos_embedding=pos_embedding)

            return cls_net, reg_net
Example #7
0
 def fn0(boxes, label, l):
     nr, _ = btf.combined_static_and_dynamic_shape(boxes)
     boxes = boxes[:l, :]
     label = label[:l]
     boxes, keep_pos = remove_bboxes_by_overlap(boxes, label, threshold)
     n_nr = btf.combined_static_and_dynamic_shape(keep_pos)[0]
     padding_nr = nr - n_nr
     keep_pos = tf.pad(keep_pos, [[0, padding_nr]])
     n_nr, _ = btf.combined_static_and_dynamic_shape(boxes)
     padding_nr = nr - n_nr
     boxes = tf.pad(boxes, [[0, padding_nr], [0, 0]])
     return boxes, keep_pos, n_nr
Example #8
0
def get_iou_matrix(boxes0, boxes1):
    X, _ = btf.combined_static_and_dynamic_shape(boxes0)
    Y, _ = btf.combined_static_and_dynamic_shape(boxes1)
    boxes0 = tf.expand_dims(boxes0, axis=1)
    boxes0 = tf.tile(boxes0, [1, Y, 1])
    boxes1 = tf.expand_dims(boxes1, axis=0)
    boxes1 = tf.tile(boxes1, [X, 1, 1])

    boxes0 = tf.reshape(boxes0, [-1, 4])
    boxes1 = tf.reshape(boxes1, [-1, 4])
    ious = batch_bboxes_jaccard(boxes0, boxes1)
    return tf.reshape(ious, [X, Y])
Example #9
0
def get_bboxes_intersection_matrix(boxes0, boxes1):
    X, _ = btf.combined_static_and_dynamic_shape(boxes0)
    Y, _ = btf.combined_static_and_dynamic_shape(boxes1)
    boxes0 = tf.expand_dims(boxes0, axis=1)
    boxes0 = tf.tile(boxes0, [1, Y, 1])
    boxes1 = tf.expand_dims(boxes1, axis=0)
    boxes1 = tf.tile(boxes1, [X, 1, 1])

    boxes0 = tf.reshape(boxes0, [-1, 4])
    boxes1 = tf.reshape(boxes1, [-1, 4])
    scores = bboxes_intersection(boxes0, boxes1)
    return tf.reshape(scores, [X, Y])
Example #10
0
def keypoints_image_summary(images,
                            keypoints=None,
                            lengths=None,
                            max_instance_to_draw=20,
                            keypoints_pair=None,
                            name="keypoints_image_summary",
                            max_outputs=3):
    """Draws bounding keypoints on batch of image tensors.

    Args:
      images: A 4D uint8 image tensor of shape [N, H, W, C].
      keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2] (x,y)
        with keypoints.
      max_instance_to_draw: Maximum number of instance to draw on an image. Default 20.

    Returns:
      4D image tensor of type uint8, with boxes drawn on top.
    """
    assert len(keypoints.get_shape()
               ) == 4, f"error keypoints dims {len(keypoints.get_shape())}"
    assert len(images.get_shape()
               ) == 4, f"error images dims {len(images.get_shape())}"
    images = images[:max_outputs]
    keypoints = keypoints[:max_outputs]
    if lengths is not None:
        lengths = lengths[:max_outputs]
        assert len(lengths.get_shape()
                   ) == 1, f"error length dims {len(lengths.get_shape())}"

    with tf.device(":/cpu:0"):
        if images.get_shape().as_list()[0] is None:
            nr = tf.reduce_prod(tf.shape(keypoints))
            B, H, W, C = btf.combined_static_and_dynamic_shape(images)
            B, MD, num_keypoints, _ = btf.combined_static_and_dynamic_shape(
                images)
            images = tf.cond(tf.greater(B, 0), lambda: images,
                             lambda: tf.ones([1, H, W, C], dtype=images.dtype))
            boxes = tf.cond(tf.greater(nr, 0), lambda: boxes,
                            lambda: tf.ones([1, 1, 4], dtype=boxes.dtype))
            keypoints = tf.cond(
                tf.greater(nr, 0), lambda: keypoints,
                lambda: tf.zeros([B, 1, num_keypoints, 2],
                                 dtype=keypoints.dtype))
        images = imv.draw_keypoints_image_summary(
            images,
            keypoints,
            keypoints_pair=keypoints_pair,
            lengths=lengths,
            max_instance_to_draw=max_instance_to_draw)

    tf.summary.image(name, images, max_outputs=max_outputs)
Example #11
0
    def ae_loss_for_single_img(self, net, indexs, nr):
        indexs = indexs[:nr]
        fnr = tf.cast(nr, tf.float32)
        with tf.name_scope("pull_loss"):
            net = tf.reshape(net, [-1])
            old_shape = btf.combined_static_and_dynamic_shape(indexs)
            ids = tf.gather(net, tf.nn.relu(tf.reshape(indexs, [-1])))
            ids = tf.reshape(ids, old_shape)
            weights = tf.cast(tf.greater_equal(indexs, 0), tf.float32)
            mean = tf.reduce_sum(
                ids * weights, axis=-1, keepdims=True) / tf.maximum(
                    tf.reduce_sum(weights, axis=-1, keepdims=True), 1e-8)
            pull_loss = tf.square(ids - mean) * weights
            pull_loss = tf.reduce_sum(pull_loss) / fnr

        with tf.name_scope("push_loss"):
            range = tf.range(nr)
            X, Y = tf.meshgrid(range, range)
            X = tf.reshape(X, [-1])
            Y = tf.reshape(Y, [-1])
            mask = tf.not_equal(X, Y)
            ftotal_nr = tf.reduce_sum(tf.cast(mask, tf.float32)) + 1e-8
            X = tf.boolean_mask(X, mask)
            Y = tf.boolean_mask(Y, mask)
            loss = -tf.square(tf.gather(mean, X) - tf.gather(mean, Y))
            loss = tf.exp(loss)
            loss = tf.reduce_sum(loss)
            loss = loss / ftotal_nr
            push_loss = loss * 0.5

        return pull_loss, push_loss
Example #12
0
def keypoints_flip_left_right(keypoints,swap_index=None):
    x,y = tf.unstack(keypoints,axis=-1)
    org_x = x
    cond = tf.logical_and(x>=0,y>=0)
    x = 1.0-x
    x = tf.where(cond,x,org_x)
    if swap_index is not None:
        swap_dict = {}
        for a,b in swap_index:
            swap_dict[a] = b
            swap_dict[b] = a
        X,N,_ = btf.combined_static_and_dynamic_shape(keypoints)
        indexs = []
        for i in range(N):
            if i in swap_dict:
                indexs.append(swap_dict[i])
            else:
                indexs.append(i)
        indexs = tf.convert_to_tensor(indexs,dtype=tf.int32)
        indexs = tf.reshape(indexs,[1,N])
        indexs = tf.tile(indexs,[X,1])
        x = tf.batch_gather(x,indexs)
        y = tf.batch_gather(y,indexs)

    return tf.stack([x,y],axis=-1)
Example #13
0
def remove_bboxes_by_overlapv2(bboxes, labels=None, threshold=0.5):
    scores = get_bboxes_intersection_matrix(bboxes, bboxes)
    R, _ = btf.combined_static_and_dynamic_shape(scores)
    scores = scores * (1.0 - tf.eye(R))
    scores_t = tf.transpose(scores)
    scores_x = tf.reshape(tf.cast(tf.range(R * R), tf.float32), [R, R])
    scores_xt = tf.transpose(scores_x)
    faild_pos0 = tf.logical_and(tf.greater(scores, threshold),
                                tf.less_equal(scores_t, threshold))
    faild_pos1 = tf.logical_and(
        tf.logical_and(tf.greater(scores, threshold),
                       tf.greater(scores_t, threshold)),
        tf.greater(scores, scores_t))
    faild_pos2 = tf.logical_and(
        tf.logical_and(tf.greater(scores, threshold),
                       tf.greater(scores_t, threshold)),
        tf.equal(scores, scores_t))
    faild_pos2 = tf.logical_and(tf.greater(scores_x, scores_xt), faild_pos2)
    faild_pos = tf.logical_or(faild_pos0, faild_pos1)
    faild_pos = tf.logical_or(faild_pos, faild_pos2)
    if labels is not None:
        labels0 = tf.reshape(labels, [R, 1])
        labels0 = tf.tile(labels0, [1, R])
        labels1 = tf.reshape(labels, [1, R])
        labels1 = tf.tile(labels1, [R, 1])
        test_pos = tf.equal(labels0, labels1)
        faild_pos = tf.logical_and(faild_pos, test_pos)

    faild_pos = tf.reduce_any(faild_pos, axis=1, keepdims=False)
    keep_pos = tf.logical_not(faild_pos)
    bboxes = tf.boolean_mask(bboxes, keep_pos)
    return bboxes, keep_pos
Example #14
0
def get_bboxes_dis(boxes0, boxes1):
    X, _ = btf.combined_static_and_dynamic_shape(boxes0)
    Y, _ = btf.combined_static_and_dynamic_shape(boxes1)
    boxes0 = tf.expand_dims(boxes0, axis=1)
    boxes0 = tf.tile(boxes0, [1, Y, 1])
    boxes1 = tf.expand_dims(boxes1, axis=0)
    boxes1 = tf.tile(boxes1, [X, 1, 1])

    boxes0 = tf.reshape(boxes0, [-1, 4])
    boxes1 = tf.reshape(boxes1, [-1, 4])
    boxes0 = get_bboxes_center_point(boxes0)
    boxes1 = get_bboxes_center_point(boxes1)
    dis = tf.square(boxes0 - boxes1)
    dis = tf.reduce_sum(dis, axis=-1, keepdims=False)
    dis = tf.sqrt(dis)
    return tf.reshape(dis, [X, Y])
Example #15
0
    def get_threshold(self, iou_matrix):
        '''
        iou_matrix: [B,GT_nr,Anchor_nr]
        X = GT_nr, Y=Anchor_nr
        return:
        [B,GT]
        '''
        B, X, Y = btf.combined_static_and_dynamic_shape(iou_matrix)
        iou_matrix = tf.reshape(iou_matrix, [B * X, Y])

        def fn(ious):
            mask = tf.greater(ious, self.MIN_IOU_THRESHOLD)

            def fn0():
                p_ious = tf.boolean_mask(ious, mask)
                mean, var = tf.nn.moments(p_ious, axes=-1)
                std = tf.sqrt(var)
                return mean + std

            def fn1():
                return tf.constant(1.0, dtype=tf.float32)

            return tf.cond(tf.reduce_any(mask), fn0, fn1)

        threshold = tf.map_fn(fn, elems=iou_matrix, back_prop=False)
        threshold = tf.reshape(threshold, [B, X])
        return tf.stop_gradient(threshold)
Example #16
0
def row_image_summaries(imgs,
                        name="image_contrast",
                        max_outputs=3,
                        margin=10,
                        resize=False,
                        is_hsv=False):
    with tf.name_scope(name):
        is_channel_equal = True
        shape = btf.combined_static_and_dynamic_shape(imgs[0])
        log_image = tf.identity(imgs[0][:max_outputs])
        channel = log_image.get_shape().as_list()[-1]
        for i in range(1, len(imgs)):
            if imgs[i].get_shape().as_list()[-1] != channel:
                is_channel_equal = False
                break
        if not is_channel_equal:
            if log_image.get_shape().as_list()[-1] == 1:
                log_image = tf.tile(log_image, [1, 1, 1, 3])
        for i in range(1, len(imgs)):
            log_image = tf.pad(log_image,
                               paddings=[[0, 0], [0, 0], [0, margin], [0, 0]])
            img = imgs[i][:max_outputs]
            if resize:
                img = tf.image.resize_nearest_neighbor(img, size=shape[1:3])
            if not is_channel_equal:
                if img.get_shape().as_list()[-1] == 1:
                    img = tf.tile(img, [1, 1, 1, 3])
            log_image = tf.concat([log_image, img], axis=2)
        if is_hsv:
            log_image = tf.image.hsv_to_rgb(log_image) * 2.0 - 1.0
        image_summaries(log_image, "image_contrast")
Example #17
0
def tfbatch_absolutely_boxes_to_relative_boxes(boxes, width, height):
    with tf.name_scope("batch_absolutely_boxes_to_relative_boxes"):
        batch_size, N, box_dim = btf.combined_static_and_dynamic_shape(boxes)
        boxes = tf.reshape(boxes, [-1, box_dim])
        res = tfabsolutely_boxes_to_relative_boxes(boxes, width, height)
        res = tf.reshape(res, [batch_size, N, box_dim])
        return res
Example #18
0
def keypoits_rotate(keypoints,angle,width,height):
    r_angle = -angle * 3.1415926 / 180
    cos = tf.cos(r_angle)
    sin = tf.sin(r_angle)
    m = tf.stack([cos, -sin, sin, cos])
    m = tf.reshape(m,[2,2])
    old_shape = btf.combined_static_and_dynamic_shape(keypoints)
    keypoints = tf.reshape(keypoints,[-1,2])
    org_x,org_y = tf.unstack(keypoints,axis=-1)
    width = tf.to_float(width)
    height = tf.to_float(height)
    keypoints = keypoints-tf.convert_to_tensor([[(width-1)/2,(height-1)/2]])
    keypoints = tf.matmul(m,keypoints,transpose_b=True)
    keypoints = tf.transpose(keypoints,[1,0])+tf.convert_to_tensor([[(width-1)/2,(height-1)/2]])
    x,y = tf.unstack(keypoints,axis=-1)

    cond = tf.logical_and(org_x>=0,org_y>=0)
    x = tf.where(cond,x,org_x)
    y = tf.where(cond,y,org_y)

    cond = tf.logical_and(tf.logical_and(x>=0,x<width), tf.logical_and(y>=0,y<height))
    x = tf.where(cond,x,tf.ones_like(x)*-100)
    y = tf.where(cond,y,tf.ones_like(y)*-100)

    keypoints = tf.stack([x,y],axis=-1)
    keypoints = tf.reshape(keypoints,old_shape)
    return keypoints
Example #19
0
    def adjust(self, ans, det):
        locs = ans[..., :2]
        values = ans[..., 2]
        x, y = tf.unstack(locs, axis=-1)
        org_x, org_y = x, y
        xx = tf.cast(x, tf.int32)
        yy = tf.cast(y, tf.int32)
        B, H, W, num_keypoints = btf.combined_static_and_dynamic_shape(det)
        det = tf.transpose(det, [0, 3, 1, 2])
        det = tf.reshape(det, [B * num_keypoints, H * W])
        yy_p = tf.minimum(yy + 1, H - 1)
        yy_n = tf.maximum(yy - 1, 0)
        xx_p = tf.minimum(xx + 1, W - 1)
        xx_n = tf.maximum(xx - 1, 0)

        def get_values(_xx, _yy):
            B, N, KN = btf.combined_static_and_dynamic_shape(_xx)
            _xx = tf.transpose(_xx, [0, 2, 1])
            _yy = tf.transpose(_yy, [0, 2, 1])
            _xx = tf.reshape(_xx, [B * KN, N])
            _yy = tf.reshape(_yy, [B * KN, N])
            index = _xx + _yy * W
            vals = tf.batch_gather(det, index)
            vals = tf.reshape(vals, [B, KN, N])
            vals = tf.transpose(vals, [0, 2, 1])
            return vals

        y_p = y + 0.25
        y_n = y - 0.25
        x_p = x + 0.25
        x_n = x - 0.25

        y = tf.where(get_values(xx, yy_p) > get_values(xx, yy_n), y_p, y_n)
        x = tf.where(get_values(xx_p, yy) > get_values(xx_n, yy), x_p, x_n)

        x = x + 0.5
        y = y + 0.5

        x = tf.where(values > 0, x, org_x)
        y = tf.where(values > 0, y, org_y)

        loc = tf.stack([x, y], axis=-1)

        B, N, KP, C = btf.combined_static_and_dynamic_shape(ans)
        _, data = tf.split(ans, [2, C - 2], axis=-1)

        return tf.concat([loc, data], axis=-1)
Example #20
0
def draw_graph(img,points,adj_mt,relative_coordinate=True):
    if relative_coordinate:
        shape = tf.shape(img)
        points = points*tf.cast(tf.convert_to_tensor([[shape[1],shape[0]]]),tf.float32)
    points = tf.to_int32(points)
    old_shape = btf.combined_static_and_dynamic_shape(img)
    img = tf.py_func(__draw_graph,inp=(img,points,adj_mt),Tout=img.dtype,stateful=False)
    return tf.reshape(img,old_shape)
Example #21
0
def is_center_in_boxes(boxes0, boxes1):
    X, _ = btf.combined_static_and_dynamic_shape(boxes0)
    Y, _ = btf.combined_static_and_dynamic_shape(boxes1)
    boxes0 = tf.expand_dims(boxes0, axis=1)
    boxes0 = tf.tile(boxes0, [1, Y, 1])
    boxes1 = tf.expand_dims(boxes1, axis=0)
    boxes1 = tf.tile(boxes1, [X, 1, 1])

    boxes0 = tf.reshape(boxes0, [-1, 4])
    boxes1 = tf.reshape(boxes1, [-1, 4])
    boxes1 = get_bboxes_center_point(boxes1)
    d0 = tf.greater_equal(boxes1[:, 0], boxes0[:, 0])
    d1 = tf.less_equal(boxes1[:, 0], boxes0[:, 2])
    d2 = tf.greater_equal(boxes1[:, 1], boxes0[:, 1])
    d3 = tf.less_equal(boxes1[:, 1], boxes0[:, 3])
    res = tf.logical_and(tf.logical_and(d0, d1), tf.logical_and(d2, d3))
    return tf.reshape(res, [X, Y])
Example #22
0
    def forward(self, boxes, gboxes, glabels, glength, *args, **kwargs):
        '''
        :param boxes: [1,X,4] or [batch_size,X,4] proposal boxes
        :param gboxes: [batch_size,Y,4] groundtruth boxes
        :param glabels: [batch_size,Y] groundtruth labels
        :param glength: [batch_size] boxes size
        :return:
        labels: [batch_size,X,4], the label of boxes, -1 indict ignored box, which will not calculate loss,
        0 is background
        scores: [batch_size,X], the overlap score with boxes' match gt box
        indices: [batch_size,X] the index of matched gt boxes when it's a positive anchor box, else it's -1
        '''
        with tf.name_scope("ATTSMatcher4"):
            iou_matrix = odb.batch_bboxes_pair_wrapv2(gboxes,
                                                      boxes,
                                                      fn=odb.get_iou_matrix,
                                                      len0=glength,
                                                      scope="get_iou_matrix")
            is_center_in_gtboxes = odb.batch_bboxes_pair_wrapv2(
                gboxes,
                boxes,
                fn=odb.is_center_in_boxes,
                len0=glength,
                dtype=tf.bool,
                scope="get_is_center_in_gtbboxes")
            wsummary.variable_summaries_v2(iou_matrix, "iou_matrix")

            with tf.device("/cpu:0"):
                iou_threshold = self.get_threshold(iou_matrix)
                iou_threshold = tf.minimum(iou_threshold, self.thresholds[-1])
                iou_matrix = tf.where(is_center_in_gtboxes, iou_matrix,
                                      tf.zeros_like(iou_matrix))
                scores, index = tf.nn.top_k(tf.transpose(iou_matrix,
                                                         perm=[0, 2, 1]),
                                            k=1)
                B, Y, _ = btf.combined_static_and_dynamic_shape(gboxes)
                index = tf.squeeze(index, axis=-1)
                scores = tf.squeeze(scores, axis=-1)
                threshold = wmlt.batch_gather(iou_threshold, index)
                labels = wmlt.batch_gather(glabels,
                                           index,
                                           name="gather_labels",
                                           parallel_iterations=B,
                                           back_prop=False)
                is_good_score = tf.greater(scores, self.MIN_IOU_THRESHOLD)
                is_good_score = tf.logical_and(is_good_score,
                                               scores >= threshold)
                labels = tf.where(is_good_score, labels, tf.zeros_like(labels))
                index = tf.where(is_good_score, index,
                                 tf.ones_like(index) * -1)

            if self.same_pos_label:
                labels = tf.where(tf.greater(labels, 0),
                                  tf.ones_like(labels) * self.same_pos_label,
                                  labels)

            return tf.stop_gradient(labels), tf.stop_gradient(
                scores), tf.stop_gradient(index)
Example #23
0
 def get_values(_xx, _yy):
     B, N, KN = btf.combined_static_and_dynamic_shape(_xx)
     _xx = tf.transpose(_xx, [0, 2, 1])
     _yy = tf.transpose(_yy, [0, 2, 1])
     _xx = tf.reshape(_xx, [B * KN, N])
     _yy = tf.reshape(_yy, [B * KN, N])
     index = _xx + _yy * W
     vals = tf.batch_gather(det, index)
     vals = tf.reshape(vals, [B, KN, N])
     vals = tf.transpose(vals, [0, 2, 1])
     return vals
Example #24
0
def get_random_crop_bboxes(img, size):
    shape = btf.combined_static_and_dynamic_shape(img)
    if len(shape) == 4:
        shape = shape[1:]
    new_size = tf.minimum(size, shape[:2])
    mh = tf.maximum(0, shape[0] - size[0])
    mw = tf.maximum(0, shape[1] - size[1])
    xmin = tf.random.uniform((), 0, mw + 1, dtype=tf.int32)
    ymin = tf.random.uniform((), 0, mh + 1, dtype=tf.int32)
    xmax = xmin + new_size[1]
    ymax = ymin + new_size[0]
    return tf.convert_to_tensor([ymin, xmin, ymax, xmax], dtype=tf.int32)
Example #25
0
def get_bboxes_center_point(data):
    old_shape = btf.combined_static_and_dynamic_shape(data)
    old_shape[-1] = 2
    data = tf.reshape(data, [-1, 4])
    ymin, xmin, ymax, xmax = tf.unstack(data, axis=1)
    cy = (ymin + ymax) / 2.
    cx = (xmin + xmax) / 2.
    data = tf.concat([tf.expand_dims(cy, -1),
                      tf.expand_dims(cx, axis=-1)],
                     axis=1)
    data = tf.reshape(data, old_shape)
    return data
Example #26
0
    def top_k(self, det, tags):
        det = wnnl.pixel_nms(det, kernel=self.cfg.HRNET_PE_NMS_KERNEL)

        max_num_people = self.cfg.HRNET_PE_MAX_NUM_PEOPLE
        B, H, W, num_keypoints = btf.combined_static_and_dynamic_shape(det)
        det = tf.reshape(det, [B, H * W, num_keypoints])
        det = tf.transpose(det, [0, 2, 1])

        val_k, indices = tf.nn.top_k(det, k=max_num_people)
        B, H, W, num_keypoints, C = btf.combined_static_and_dynamic_shape(tags)
        tags = tf.reshape(tags, [B, H * W, num_keypoints, C])
        tags = tf.transpose(tags, [0, 2, 1, 3])
        tag_k = tf.batch_gather(tags, indices)

        x = indices % W
        y = indices // H

        loc_k = tf.stack([x, y], axis=-1)
        loc_k = tf.cast(loc_k, tf.float32)

        return tag_k, loc_k, val_k
Example #27
0
def concat_shuffle_split(x, y):
    with tf.name_scope('concat_shuffle_split'):
        shape = btf.combined_static_and_dynamic_shape(x)
        batch_size = shape[0]
        height, width = shape[1], shape[2]
        depth = x.shape[3].value

        z = tf.stack([x, y],
                     axis=3)  # shape [batch_size, height, width, 2, depth]
        z = tf.transpose(z, [0, 1, 2, 4, 3])
        z = tf.reshape(z, [batch_size, height, width, 2 * depth])
        x, y = tf.split(z, num_or_size_splits=2, axis=3)
        return x, y
Example #28
0
 def to_patch(self, images, scope=None):
     with tf.name_scope(scope, "to_patch"):
         patch_size = self.patch_size
         batch_size, height, width, channel = btf.combined_static_and_dynamic_shape(
             images)
         self.batch_size, self.height, self.width, self.channel = batch_size, height, width, channel
         net = tf.reshape(images, [
             batch_size, height // patch_size, patch_size,
             width // patch_size, patch_size, channel
         ])
         net = tf.transpose(net, [0, 1, 3, 2, 4, 5])
         self.patchs = tf.reshape(net,
                                  [-1, patch_size, patch_size, channel])
         return self.patchs
Example #29
0
def concat_images(images, margin=10):
    with tf.name_scope("concat_images"):
        new_images = []
        mean = tf.reduce_mean(images[0])
        B, H, W, C = btf.combined_static_and_dynamic_shape(images[0])
        size = [H, W]
        if margin is not None:
            margin_img = tf.ones([B, H, margin, C],
                                 dtype=images[0].dtype) * mean
        for i, img in enumerate(images):
            if margin is not None and i > 0:
                new_images.append(margin_img)
            new_images.append(tf.image.resize_bilinear(img, size=size))
        return tf.concat(new_images, axis=2)
Example #30
0
 def inference(self, inputs, logits):
     size = btf.img_size(inputs[IMAGE])
     logits = tf.image.resize_bilinear(logits, size, align_corners=True)
     shape = btf.combined_static_and_dynamic_shape(logits)
     shape[-1] = 1
     background = tf.ones(shape=shape,
                          dtype=tf.float32) * self.cfg.SCORE_THRESH_TEST
     probs = tf.nn.sigmoid(logits)
     probs = tf.concat([background, probs], axis=-1)
     mask = tf.argmax(probs, 3)
     semantic = tf.one_hot(mask,
                           depth=self.num_classes + 1,
                           on_value=1.0,
                           off_value=0.0)
     return {RD_SPARSE_SEMANTIC: mask, RD_SEMANTIC: semantic}