Example #1
0
def do_classification(feature_data, predict, params):
    length = params[0]['max_length']
    x, m = batch.make_batch(feature_data, length, length / 2)
    #decision = predict(np.expand_dims(feature_data,axis=0).astype('float32'), np.ones(shape=(1,feature_data.shape[0])))
    decision = predict(x, m)
    pred_label = np.argmax(np.sum(decision, axis=0), axis=-1)
    return batch.labels[pred_label]
Example #2
0
def train(args, data, model, criterion, optimizer):
    [
        prot_fea_list, drug_node_list, drug_edge_list, drug_n2n_list,
        drug_e2n_list, label_list
    ] = data

    prot_data = [prot_fea_list]
    drug_data = [drug_node_list, drug_edge_list, drug_n2n_list, drug_e2n_list]
    label_data = [label_list]

    n_data = len(label_list)
    n_step = int(n_data / args.n_batch) + 1

    batch_idx_list = split(list(range(n_data)), n_step, shuffle=True)

    total_loss = 0
    model.train()
    for i, batch_idx in enumerate(batch_idx_list):
        batch_data = batch.make_batch(args,
                                      data=[prot_data, drug_data, label_data],
                                      idx=batch_idx)
        batch_prot_data, batch_drug_data, batch_label_data = batch_data

        optimizer.zero_grad()

        pred = model(batch_prot_data, batch_drug_data)
        loss = criterion(pred.squeeze(), batch_label_data)
        loss.backward()
        optimizer.step()

        total_loss += loss.data

    return total_loss / n_step
def do_classification(feature_data, predict, params):
    length = params[0]['max_length']
    x, m = batch.make_batch(feature_data,length,length/2)
    #decision = predict(np.expand_dims(feature_data,axis=0).astype('float32'), np.ones(shape=(1,feature_data.shape[0])))
    decision = predict(x, m)
    pred_label = np.argmax(np.sum(decision,axis=0), axis = -1)
    return batch.labels[pred_label]
Example #4
0
def do_classification(feature_data, predict, params):
    length = params[0]['max_length']
    x, m = batch.make_batch(feature_data, length, length / 2)
    x = batch.make_context(x, 15)
    #decision = predict(np.expand_dims(feature_data,axis=0).astype('float32'), np.ones(shape=(1,feature_data.shape[0])))
    decision = predict(x)
    return decision
def do_classification(feature_data, predict, params):
    length = params[0]['max_length']
    x, m = batch.make_batch(feature_data,length,length/2)
    x=batch.make_context(x,15)
    #decision = predict(np.expand_dims(feature_data,axis=0).astype('float32'), np.ones(shape=(1,feature_data.shape[0])))
    decision = predict(x)
    return decision
def do_classification(feature_data, predict, params):
    '''
    input feature_data
    return classification results
    '''
    x, _ = batch.make_batch(feature_data, 15, 5)
    decision = predict(x.reshape((x.shape[0], -1)))
    return decision
def do_classification(feature_data, predict, params):
    '''
    input feature_data
    return classification results
    '''
    x, _ = batch.make_batch(feature_data,15,5)
    decision = predict(x.reshape((x.shape[0],-1)))
    return decision
Example #8
0
def test(args, data, model, criterion, val):
    if val:
        shuffle = True
        n_mc_step = 1
    else:
        shuffle = False
        n_mc_step = args.n_mc_step

    [
        prot_fea_list, drug_node_list, drug_edge_list, drug_n2n_list,
        drug_e2n_list, label_list
    ] = data
    prot_data = [prot_fea_list]
    drug_data = [drug_node_list, drug_edge_list, drug_n2n_list, drug_e2n_list]
    label_data = [label_list]

    n_data = len(label_list)
    n_step = int(n_data / args.n_batch) + 1

    batch_idx_list = split(list(range(n_data)), n_step, shuffle=shuffle)

    y_pred_list = []
    label_list = []
    score_list = []
    total_loss = 0

    model.train()
    for mc_idx in range(n_mc_step):
        buf_y_pred_list = []
        buf_label_list = []
        for i, batch_idx in enumerate(batch_idx_list):
            batch_data = batch.make_batch(
                args, data=[prot_data, drug_data, label_data], idx=batch_idx)
            batch_prot_data, batch_drug_data, batch_label_data = batch_data

            y_pred = model(batch_prot_data, batch_drug_data)
            loss = criterion(y_pred.squeeze(), batch_label_data)

            total_loss += loss.data

            for yp in y_pred.squeeze().cpu().detach().numpy():
                buf_y_pred_list.append(yp)
            for l in batch_label_data.squeeze().cpu().detach().numpy():
                buf_label_list.append(l)
        y_pred_list.append(buf_y_pred_list)
        label_list.append(buf_label_list)

        score_list.append(cal_roc_auc(buf_label_list, buf_y_pred_list))

    y_pred_list = np.array(y_pred_list)
    label_list = np.array(label_list)

    #print("P = {}".format(model.prot_encoder.prot_fc1.ConDrop.p))

    return (total_loss / n_step / n_mc_step, np.mean(score_list), label_list,
            y_pred_list)
def do_classification(feature_data, predict, params):
    '''
    input feature_data
    return classification results
    '''
    # ???
    #import pdb; pdb.set_trace()
    x, _ = batch.make_batch(feature_data,params[0]['max_length'],params[0]['max_length'])
    x = reshape(x)
    decision = predict(x)
    return decision
Example #10
0
def test(args, data, model, criterion, val):
    if val:
        shuffle = True
    else:
        shuffle = False
    [
        prot_fea_list, drug_node_list, drug_edge_list, drug_n2n_list,
        drug_e2n_list, label_list
    ] = data
    prot_data = [prot_fea_list]
    drug_data = [drug_node_list, drug_edge_list, drug_n2n_list, drug_e2n_list]
    label_data = [label_list]

    n_data = len(label_list)
    n_step = int(n_data / args.n_batch) + 1

    batch_idx_list = split(list(range(n_data)), n_step, shuffle=shuffle)

    y_pred_list = []
    label_list = []
    total_loss = 0

    model.eval()
    for i, batch_idx in enumerate(batch_idx_list):
        batch_data = batch.make_batch(args,
                                      data=[prot_data, drug_data, label_data],
                                      idx=batch_idx)
        batch_prot_data, batch_drug_data, batch_label_data = batch_data

        y_pred = model(batch_prot_data, batch_drug_data)
        loss = criterion(y_pred.squeeze(), batch_label_data)

        total_loss += loss.data

        for yp in y_pred.squeeze().cpu().detach().numpy():
            y_pred_list.append(yp)
        for l in batch_label_data.squeeze().cpu().detach().numpy():
            label_list.append(l)

    score = cal_roc_auc(label_list, y_pred_list)

    y_pred_list = np.array(y_pred_list)
    label_list = np.array(label_list)

    return (total_loss / n_step, score, label_list, y_pred_list)
Example #11
0
                output, main = solve_system(system)

                #postprocess

                if output is not None:

                    main = postprocess_data(system, output)

                if main == 1: break

            else: break

    if option == 2:
        #run a batch  file

        systems, type, main = make_batch(system)

        if main != 1:

            outputs, main = solve_batch(systems, type)

            if outputs is not None:

                main = postprocess_batch(type, systems, outputs)

            if main == 1: break

    if option == 3:
        #Load an existing output file

        while (1):