Example #1
0
file_ptr = open(mapping_file, 'r')
actions = file_ptr.read().split('\n')[:-1]
file_ptr.close()
actions_dict = dict()
for a in actions:
    actions_dict[a.split()[1]] = int(a.split()[0])

num_classes = len(actions_dict)

trainer = Trainer(num_stages,
                  num_layers,
                  num_f_maps,
                  features_dim,
                  num_classes,
                  pooling_type=pooling_type,
                  dropout=dropout)
if args.action == "train":
    batch_gen = BatchGenerator(num_classes, actions_dict, gt_path,
                               features_path, sample_rate)
    batch_gen.read_data(vid_list_file)
    trainer.train(model_dir,
                  batch_gen,
                  num_epochs=num_epochs,
                  batch_size=bz,
                  learning_rate=lr,
                  device=device)

if args.action == "predict":
    trainer.predict(model_dir, results_dir, features_path, vid_list_file_tst,
                    num_epochs, actions_dict, device, sample_rate)
Example #2
0
def main(args, device, model_load_dir, model_save_dir, results_save_dir):

    if args.action == 'train' and args.extract_save_pseudo_labels == 0:
        # load train dataset and test dataset
        print(f'Load train data: {args.train_data}')
        train_loader = DataLoader(args, args.train_data, 'train')
        print(f'Load test data: {args.test_data}')
        test_loader = DataLoader(args, args.test_data, 'test')

        print(f'Start training.')
        trainer = Trainer(
                    args.num_stages,
                    args.num_layers,
                    args.num_f_maps,
                    args.features_dim,
                    train_loader.num_classes,
                    device,
                    train_loader.weights,
                    model_save_dir
                    )

        eval_args = [
            args,
            model_save_dir,
            results_save_dir,
            test_loader.features_dict,
            test_loader.gt_dict,
            test_loader.eval_gt_dict,
            test_loader.vid_list,
            args.num_epochs,
            device,
            'eval',
            args.classification_threshold,
        ]

        batch_gen = BatchGenerator(
            train_loader.num_classes,
            train_loader.gt_dict,
            train_loader.features_dict,
            train_loader.eval_gt_dict
            )

        batch_gen.read_data(train_loader.vid_list)
        trainer.train(
            model_save_dir,
            batch_gen,
            args.num_epochs,
            args.bz,
            args.lr,
            device,
            eval_args,
            pretrained=model_load_dir)

    elif args.extract_save_pseudo_labels and args.pseudo_label_type != 'PL':
        # extract/ generate pseudo labels and save in "data/pseudo_labels"
        print(f'Load test data: {args.test_data}')
        test_loader = DataLoader(args, args.test_data, args.extract_set, results_dir=results_save_dir)
        print(f'Extract {args.pseudo_label_type}')
        
        if args.pseudo_label_type == 'local':
            get_save_local_fusion(args, test_loader.features_dict, test_loader.gt_dict)
        elif args.pseudo_label_type == 'merge':
            merge_PL_CP(args, test_loader.features_dict, test_loader.gt_dict)
        elif args.pseudo_label_type == 'CMPL':
            CMPL(args, test_loader.features_dict, test_loader.gt_dict)
        elif args.pseudo_label_type == 'CP':
            extract_CP(args, test_loader.features_dict)
        
        print('Self labelling process finished')


    else:
        print(f'Load test data: {args.test_data}')
        test_loader = DataLoader(args, args.test_data, args.extract_set, results_dir=results_save_dir)

        if args.extract_save_pseudo_labels and args.pseudo_label_type == 'PL':
            print(f'Extract {args.pseudo_label_type}')
            extract_save_PL = 1
        else:
            print(f'Start inference.')
            extract_save_PL = 0

        trainer = Trainer(
            args.num_stages,
            args.num_layers,
            args.num_f_maps,
            args.features_dim,
            test_loader.num_classes,
            device,
            test_loader.weights,
            results_save_dir)

        trainer.predict(
            args,
            model_load_dir,
            results_save_dir,
            test_loader.features_dict,
            test_loader.gt_dict,
            test_loader.eval_gt_dict,
            test_loader.vid_list,
            args.num_epochs,
            device,
            'test',
            args.classification_threshold,
            uniform=args.uniform,
            save_pslabels=extract_save_PL,
            CP_dict=test_loader.CP_dict,
            )
Example #3
0
actions = file_ptr.read().split('\n')[:-1]  # list of classes
file_ptr.close()
actions_dict = dict()
for a in actions:
    actions_dict[a.split()[1]] = int(a.split()[0])

num_classes = len(actions_dict)

# initialize model & trainer
model = MultiStageModel(args, num_classes)
trainer = Trainer(num_classes)

# ====== Main Program ====== #
start_time = time.time()
if args.action == "train":
    batch_gen_source = BatchGenerator(num_classes, actions_dict, gt_path,
                                      features_path, sample_rate)
    batch_gen_target = BatchGenerator(num_classes, actions_dict, gt_path,
                                      features_path, sample_rate)
    batch_gen_source.read_data(
        vid_list_file)  # read & shuffle the source training list
    batch_gen_target.read_data(
        vid_list_file_target)  # read & shuffle the target training list
    trainer.train(model, model_dir, results_dir, batch_gen_source,
                  batch_gen_target, device, args)

if args.action == "predict":
    predict(model, model_dir, results_dir, features_path, vid_list_file_test,
            args.num_epochs, actions_dict, device, sample_rate, args)

end_time = time.time()
Example #4
0
                           fn='valid.p.soundcorpus.p')
len_valid = valid_corpus._get_len()
background_noise_corpus = SoundCorpus(cfg.soundcorpus_dir,
                                      mode='background',
                                      fn='background.p.soundcorpus.p')
unknown_corpus = SoundCorpus(cfg.soundcorpus_dir,
                             mode='unknown',
                             fn='unknown.p.soundcorpus.p')
silence_corpus = SoundCorpus(cfg.soundcorpus_dir,
                             mode='silence',
                             fn='silence.p.soundcorpus.p')

batch_parameters = BatchParams()
advanced_gen = BatchGenerator(batch_parameters,
                              train_corpus,
                              background_noise_corpus,
                              unknown_corpus,
                              SilenceCorpus=None)

encoder = train_corpus.encoder
decoder = train_corpus.decoder

num_classes = len(decoder) - 1

# set_graph Graph

batch_size = batch_parameters.batch_size
is_training = cfg.is_training
max_gradient = cfg.max_gradient

training_iters = train_corpus.len
Example #5
0
file_ptr = open(mapping_file, 'r')
actions = file_ptr.read().split('\n')[:-1]
file_ptr.close()
actions_dict = dict()
for a in actions:
    actions_dict[a.split()[1]] = int(a.split()[0])

num_classes = len(actions_dict)

# train
trainer = Trainer(num_stages, num_layers, num_f_maps, features_dim,
                  num_classes)
no_change = 1
if args.action == "train":
    batch_gen = BatchGenerator(num_classes, actions_dict, segmentation_path,
                               features_path, sample_rate)
    batch_gen.read_data(vid_list_file)
    weights = batch_gen.set_class_weights()
    trainer.ce(weight=weights)
    while (no_change):
        trainer.train(model_dir,
                      batch_gen,
                      num_epochs=num_epochs,
                      batch_size=bz,
                      learning_rate=lr,
                      device=device)
        trainer.predict(model_dir, temp_results_dir, features_path,
                        vid_list_file, num_epochs, actions_dict, device,
                        sample_rate)
        utils.generate_target(segmentation_path, temp_results_dir,
                              vid_list_file)
def main():
    config = get_arg()
    config.save_folder = os.path.join(config.save_folder, config.model)
    if not os.path.exists(config.save_folder):
        os.makedirs(config.save_folder)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if device == "cuda":
        torch.set_default_tensor_type("torch.cuda.FloatTensor")
    else:
        torch.set_default_tensor_type("torch.FloatTensor")

    # Traindataset = featDataset(mode="train", feat_model=config.model)
    num_classes = 11
    actions_dict = {
        "opening": 0,
        "moving": 1,
        "hidden": 2,
        "painting": 3,
        "battle": 4,
        "respawn": 5,
        "superjump": 6,
        "object": 7,
        "special": 8,
        "map": 9,
        "ending": 10,
    }
    actions_dict = utils.label_to_id
    gt_path = "../../../data/training/feature_ext/vgg"
    features_path = "../../../data/training/feature_ext/vgg"
    Traindataset = BatchGenerator(num_classes, actions_dict, gt_path,
                                  features_path)
    Traindataset.read_data()
    Testdataset = BatchGenerator(num_classes, actions_dict, gt_path,
                                 features_path)
    Testdataset.read_data(mode="test")

    num_stages = 2
    num_layers = 2
    num_f_maps = 8
    features_dim = 4
    num_f_maps = 64
    features_dim = 512 * 8 * 8
    # num_f_maps = 512 * 8 * 8
    # features_dim = 2048

    model = LSTMclassifier(1, 1, 256)

    model = model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=config.lr)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)
    criterion = nn.CrossEntropyLoss()

    best_eval = 0
    for epoch in range(1, 1 + config.epochs):
        print("epoch:", epoch)
        t0 = time.time()
        train(
            model=model,
            optimizer=optimizer,
            criterion=criterion,
            dataset=Traindataset,
            config=config,
            device=device,
            # dataset_perm=dataset_perm,
        )
        t1 = time.time()
        scheduler.step()
        print(f"\nlr: {scheduler.get_last_lr()}")
        t1 = time.time()
        print(f"\ntraining time :{round(t1 - t0)} sec")

        best_eval = test(
            model=model,
            dataset=Testdataset,
            config=config,
            device=device,
            best_eval=best_eval,
        )
Example #7
0
    def __init__(self):
        self.cfg = Config()
        self.h_params = Hparams()
        self.batch_params = BatchParams()
        self.display_params = DisplayParams()

        if not os.path.exists(self.cfg.logs_path):
            os.makedirs(self.cfg.logs_path)
        self.write_config()

        self.graph = tf.Graph()
        # self.tf_seed = tf.set_random_seed(self.h_params.tf_seed) deprecated
        self.batch_shape = (
            None, ) + self.batch_params.dims_input_transformation
        self.baseline = Baseline(self.h_params)
        self.infos = self._load_infos()
        self.train_corpus = SoundCorpus(self.cfg.soundcorpus_dir, mode='train')
        self.valid_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                        mode='valid',
                                        fn='valid.pf.soundcorpus.p')
        self.len_valid = self.valid_corpus._get_len()
        self.noise_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                        mode='background',
                                        fn='background.pf.soundcorpus.p')
        self.unknown_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                          mode='unknown',
                                          fn='unknown.pf.soundcorpus.p')
        self.test_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                       mode='own_test',
                                       fn='own_test_fname.p.soundcorpus.p')
        self.fname2label = self._load_fname2label()
        len_test = self.test_corpus._get_len()
        test_gen = self.test_corpus.batch_gen(
            len_test,
            input_transformation='filterbank',
            dims_input_transformation=self.batch_params.
            dims_input_transformation)
        self.test_batch_x, test_batch_y = next(test_gen)
        self.test_batch_y = [self.fname2label[b] for b in test_batch_y]

        self.advanced_gen = BatchGenerator(self.batch_params,
                                           self.train_corpus,
                                           self.noise_corpus,
                                           self.unknown_corpus)
        if self.advanced_gen.train_silence_detection:
            self.test_batch_y = [
                1 if i == 11 else 0 for i in self.test_batch_y
            ]

        if self.cfg.preprocessed:
            self.advanced_gen = self.corpus_gen('test.p')
        self.encoder = self.infos['name2id']
        self.decoder = self.infos['id2name']
        if self.batch_params.portion_silence == 0:
            self.num_classes = len(self.decoder) - 1  #11
        else:
            self.num_classes = len(self.decoder)
        if self.advanced_gen.train_silence_detection:
            self.num_classes = 2
        self.training_iters = self.train_corpus.len
        self.result = None
Example #8
0
class Model:
    def __init__(self):
        self.cfg = Config()
        self.h_params = Hparams()
        self.batch_params = BatchParams()
        self.display_params = DisplayParams()

        if not os.path.exists(self.cfg.logs_path):
            os.makedirs(self.cfg.logs_path)
        self.write_config()

        self.graph = tf.Graph()
        # self.tf_seed = tf.set_random_seed(self.h_params.tf_seed) deprecated
        self.batch_shape = (
            None, ) + self.batch_params.dims_input_transformation
        self.baseline = Baseline(self.h_params)
        self.infos = self._load_infos()
        self.train_corpus = SoundCorpus(self.cfg.soundcorpus_dir, mode='train')
        self.valid_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                        mode='valid',
                                        fn='valid.pf.soundcorpus.p')
        self.len_valid = self.valid_corpus._get_len()
        self.noise_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                        mode='background',
                                        fn='background.pf.soundcorpus.p')
        self.unknown_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                          mode='unknown',
                                          fn='unknown.pf.soundcorpus.p')
        self.test_corpus = SoundCorpus(self.cfg.soundcorpus_dir,
                                       mode='own_test',
                                       fn='own_test_fname.p.soundcorpus.p')
        self.fname2label = self._load_fname2label()
        len_test = self.test_corpus._get_len()
        test_gen = self.test_corpus.batch_gen(
            len_test,
            input_transformation='filterbank',
            dims_input_transformation=self.batch_params.
            dims_input_transformation)
        self.test_batch_x, test_batch_y = next(test_gen)
        self.test_batch_y = [self.fname2label[b] for b in test_batch_y]

        self.advanced_gen = BatchGenerator(self.batch_params,
                                           self.train_corpus,
                                           self.noise_corpus,
                                           self.unknown_corpus)
        if self.advanced_gen.train_silence_detection:
            self.test_batch_y = [
                1 if i == 11 else 0 for i in self.test_batch_y
            ]

        if self.cfg.preprocessed:
            self.advanced_gen = self.corpus_gen('test.p')
        self.encoder = self.infos['name2id']
        self.decoder = self.infos['id2name']
        if self.batch_params.portion_silence == 0:
            self.num_classes = len(self.decoder) - 1  #11
        else:
            self.num_classes = len(self.decoder)
        if self.advanced_gen.train_silence_detection:
            self.num_classes = 2
        self.training_iters = self.train_corpus.len
        self.result = None

    def _load_infos(self):
        with open(self.cfg.soundcorpus_dir + 'infos.p', 'rb') as f:
            infos = pickle.load(f)
        return infos

    def _load_fname2label(self):
        with open(self.cfg.soundcorpus_dir + 'fname2label.p', 'rb') as f:
            fname2label = pickle.load(f)
        return fname2label

    def save(self, sess, epoch):
        print('saving model...', end='')
        model_name = 'model_%s_bsize%s_e%s.ckpt' % (
            'mfcc', self.batch_params.batch_size, epoch)
        s_path = self.saver.save(sess, self.cfg.logs_path + model_name)
        print("Model saved in file: %s" % s_path)

    @staticmethod
    def class2list(class_):
        class_list = [[item, class_.__dict__[item]]
                      for item in sorted(class_.__dict__)
                      if not item.startswith('__')]
        return class_list

    def get_config(self):
        config_list = []

        for line in self.class2list(Config):
            config_list.append(line)
        for line in self.class2list(Hparams):
            config_list.append(line)
        for line in self.class2list(DisplayParams):
            config_list.append(line)
        for line in self.class2list(BatchParams):
            config_list.append(line)
        return config_list

    def add_experiment_to_csv(self):
        with open('model_runs.csv', 'a') as csvfile:
            writer = csv.writer(csvfile,
                                delimiter=';',
                                quotechar='|',
                                quoting=csv.QUOTE_MINIMAL)
            config_list = self.get_config()
            result_list = self.result
            #writer.writerow([c[0] for c in config_list])
            writer.writerow([c[1] for c in config_list] +
                            [r[1] for r in result_list])

    def preprocess(self, fn='preprocessed_batch_corpus.p'):
        batch_gen = self.advanced_gen.batch_gen()
        with open(fn, 'wb') as f:
            pickler = pickle.Pickler(f)
            tic = time.time()

            for epoch in range(self.h_params.epochs):
                toc = time.time()
                logging.info('epoch %s - time needed %s' % (epoch, toc - tic))
                step = 1

                # Keep training until reach max iterations
                tic = time.time()

                while step * self.batch_params.batch_size < self.training_iters:
                    # for (batch_x,batch_y) in batch_gen:
                    batch_x, batch_y = next(batch_gen)
                    pickler.dump((batch_x, batch_y))
                    step += 1

    def write_result_to_csv(self, row):
        with open(self.cfg.logs_path + 'results.csv', 'a') as csvfile:
            writer = csv.writer(csvfile,
                                delimiter=';',
                                quotechar='|',
                                quoting=csv.QUOTE_MINIMAL)
            #writer.writerow([c[0] for c in config_list])
            writer.writerow(row)

    class corpus_gen:
        def __init__(self, fn):
            self.fn = fn

        def gen_corpus(self):
            with open(self.fn, 'rb') as f:
                unpickler = pickle.Unpickler(f)
                while True:
                    data = unpickler.load()
                    yield data

        def batch_gen(self):
            gen = self.gen_corpus()
            while True:
                try:
                    batch = next(gen)

                except EOFError:
                    print('restarting gen')
                    gen = self.gen_corpus()
                    batch = next(gen)
                yield batch

    def write_config(self):
        with open(os.path.join(self.cfg.logs_path, 'config.txt'), 'w') as f:
            f.write('Baseline = {}\n'.format(Baseline.__name__))
            f.write('\n')
            f.write('Config\n')
            for line in self.class2list(Config):
                f.write('{} = {}\n'.format(line[0], line[1]))
            f.write('\n')
            f.write('HParams\n')
            for line in self.class2list(Hparams):
                f.write('{} = {}\n'.format(line[0], line[1]))
            f.write('\n')
            f.write('DisplayParams\n')
            for line in self.class2list(DisplayParams):
                f.write('{} = {}\n'.format(line[0], line[1]))
            f.write('\n')
            f.write('BatchParams\n')
            for line in self.class2list(BatchParams):
                f.write('{} = {}\n'.format(line[0], line[1]))

    def restore(self, sess, fn_model):
        self.saver.restore(sess, fn_model)
        print("Model restored.")

    def predict(self, batch_x_iter, fn_model):
        with tf.Session(graph=self.graph) as sess:

            self.restore(sess, fn_model)
            predictions = []
            k_batch = 0
            try:
                for batch_x in batch_x_iter:
                    if k_batch % 100 == 0:
                        logging.info(str(k_batch))
                    prediction = sess.run([self.pred],
                                          feed_dict={
                                              self.x: batch_x,
                                              self.keep_prob: 1.0
                                          })
                    print(prediction)
                    for k, p in enumerate(prediction[0]):
                        predictions.append([batch_x[k], self.decoder[p]])
                    k_batch += 1
            except EOFError:
                pass
        return predictions

    def train(self):
        with tf.Session(graph=self.graph, ) as sess:
            logging.info('Start training')
            self.init = tf.global_variables_initializer()
            train_writer = tf.summary.FileWriter(self.cfg.logs_path + 'train/',
                                                 graph=self.graph)
            valid_writer = tf.summary.FileWriter(self.cfg.logs_path + 'valid/')
            sess.run(self.init)
            global_step = 0

            batch_gen = self.advanced_gen.batch_gen()
            for epoch in range(1, self.h_params.epochs):

                step = 1

                # Keep training until reach max iterations
                current_time = time.time()

                while step * self.batch_params.batch_size < self.training_iters:
                    # for (batch_x,batch_y) in batch_gen:
                    batch_x, batch_y = next(batch_gen)
                    # logging.info('epoch ' + str(epoch) + ' - step ' + str(step))
                    # batch_x, batch_y = next(gen.batch_gen())

                    # Run optimization op (backprop)
                    summary_, _ = sess.run(
                        [self.summaries, self.optimizer],
                        feed_dict={
                            self.x: batch_x,
                            self.y: batch_y,
                            self.keep_prob: self.h_params.keep_prob
                        })
                    train_writer.add_summary(summary_, global_step)
                    if step % self.display_params.print_step == 0:
                        # Calculate batch accuracy

                        logging.info('epoch %s - step %s' % (epoch, step))
                        logging.info('runtime for batch of ' +
                                     str(self.batch_params.batch_size *
                                         self.display_params.print_step) +
                                     ' ' + str(time.time() - current_time))
                        current_time = time.time()
                        c, acc, cm = sess.run(
                            [self.cost, self.accuracy, self.confusion_matrix],
                            feed_dict={
                                self.x: batch_x,
                                self.y: batch_y,
                                self.keep_prob: self.h_params.keep_prob
                            })

                        print(c, acc)
                        for k in range(self.num_classes):
                            print(
                                str(self.decoder[k]) + ' ' +
                                str(cm[k, k] / sum(cm[k, :])))
                        if self.display_params.print_confusion_matrix:
                            print(cm)
                        print(' ')
                        #c_test, acc_test, cm_test = sess.run([self.cost, self.accuracy, self.confusion_matrix],
                        #                                     feed_dict={self.x: self.test_batch_x,
                        #                                                self.y: self.test_batch_y,
                        #                                                self.keep_prob: 1})
                        #print(' ')
                        #print("test:", c_test, acc_test)
                        #print(cm_test)
                        #model_name = 'model_%s_bsize%s_e%s_s%s.ckpt' % ('mfcc', self.batch_params.batch_size, epoch,step)
                        #s_path = self.saver.save(sess, self.cfg.logs_path + model_name)
                        #print('saving under ' + s_path)
                    step += 1
                    global_step += 1
                # if epoch % cfg.epochs_per_save == 0:
                self.save(sess, epoch)
                val_batch_gen = self.valid_corpus.batch_gen(
                    self.batch_params.batch_size,
                    input_transformation='filterbank',
                    dims_input_transformation=self.batch_params.
                    dims_input_transformation)
                val_batch_x, val_batch_y = next(val_batch_gen)
                summary_val, c_val, acc_val, cm_val = sess.run(
                    [
                        self.summaries, self.cost, self.accuracy,
                        self.confusion_matrix
                    ],
                    feed_dict={
                        self.x: val_batch_x,
                        self.y: val_batch_y,
                        self.keep_prob: 1
                    })
                valid_writer.add_summary(summary_val, global_step)
                print("validation:", c_val, acc_val)
                print(cm_val)
                for k in range(11):
                    print(
                        str(self.decoder[k]) + ' ' +
                        str(cm_val[k, k] / sum(cm_val[k, :])))
                c_test, acc_test, cm_test = sess.run(
                    [self.cost, self.accuracy, self.confusion_matrix],
                    feed_dict={
                        self.x: self.test_batch_x,
                        self.y: self.test_batch_y,
                        self.keep_prob: 1
                    })
                print(' ')
                print("test:", c_test, acc_test)
                print(cm_test)
                for k in range(12):
                    print(
                        str(self.decoder[k]) + ' ' +
                        str(cm_test[k, k] / sum(cm_test[k, :])))
                row = [acc_test] + [
                    cm_test[k, k] / sum(cm_test[k, :]) for k in range(12)
                ]
                self.write_result_to_csv(row)
                print(' ')
                #print(self.lr)
                if epoch % self.batch_params.unknown_change_epochs == 0:
                    self.advanced_gen.portion_unknown = self.advanced_gen.portion_unknown * self.batch_params.unknown_change_rate

            print("Optimization Finished!")
            #self.result = [['train_acc',acc],['val_acc',acc_val]]
        pass

    #def debug(self):
    #    with tf.Session(graph=graph) as sess:
    #        init = tf.global_variables_initializer()
    #        sess.run(init)
    #        batch_gen = advanced_gen.batch_gen()
    #        batch_x, batch_y = next(batch_gen)
    #        l, kw = sess.run([logits, krw], feed_dict={x: batch_x, y: batch_y, keep_prob: cfg.keep_prob})
    #        return l, kw
    #    pass

    def set_graph(self):
        logging.info('Setting Graph Variables')
        with self.graph.as_default():
            # tf Graph input
            tf.set_random_seed(self.h_params.tf_seed)
            with tf.name_scope("Input"):
                self.x = tf.placeholder(tf.float32,
                                        shape=self.batch_shape,
                                        name="input")
                self.y = tf.placeholder(tf.int64, shape=(None, ), name="input")
                self.keep_prob = tf.placeholder(tf.float32, name="dropout")
                class_weights = tf.constant(self.h_params.class_weights)
                weights = tf.gather(class_weights, self.y)
            with tf.variable_scope('logit'):
                self.logits = self.baseline.calc_logits(
                    self.x, self.keep_prob, self.num_classes)

            with tf.variable_scope('costs'):
                self.xent = tf.losses.sparse_softmax_cross_entropy(
                    labels=self.y, logits=self.logits, weights=weights)
                self.cost = tf.reduce_mean(self.xent, name='xent')
                if self.h_params.reg_constant is not None:
                    self.cost = self.cost + tf.add_n(
                        tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
                tf.summary.scalar('cost', self.cost)
            with tf.variable_scope('acc'):
                self.pred = tf.argmax(self.logits, 1)
                self.correct_prediction = tf.equal(self.pred,
                                                   tf.reshape(self.y, [-1]))
                self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction,
                                                       tf.float32),
                                               name='accu')
                self.confusion_matrix = tf.confusion_matrix(
                    tf.reshape(self.y, [-1]), self.pred, self.num_classes)
                tf.summary.scalar('accuracy', self.accuracy)
            with tf.variable_scope('acc_per_class'):
                for i in range(self.num_classes):
                    acc_id = self.confusion_matrix[i, i] / tf.reduce_sum(
                        self.confusion_matrix[i, :])
                    tf.summary.scalar(self.decoder[i], acc_id)

            # train ops
            self.gradients = tf.gradients(self.cost, tf.trainable_variables())
            tf.summary.scalar('grad_norm', tf.global_norm(self.gradients))
            # gradients, _ = tf.clip_by_global_norm(raw_gradients,max_gradient, name="clip_gradients")
            # gradnorm_clipped = tf.global_norm(gradients)
            # tf.summary.scalar('grad_norm_clipped', gradnorm_clipped)
            self.iteration = tf.Variable(0,
                                         dtype=tf.int64,
                                         name="iteration",
                                         trainable=False)
            self.lr_ = tf.Variable(self.h_params.learning_rate,
                                   dtype=tf.float64,
                                   name="lr_",
                                   trainable=False)
            decay = tf.Variable(self.h_params.lr_decay_rate,
                                dtype=tf.float64,
                                name="decay",
                                trainable=False)
            steps_ = tf.Variable(self.h_params.lr_change_steps,
                                 dtype=tf.int64,
                                 name="setps_",
                                 trainable=False)
            self.lr = tf.train.exponential_decay(self.lr_,
                                                 self.iteration,
                                                 steps_,
                                                 decay,
                                                 staircase=True)
            tf.summary.scalar('learning_rate', self.lr)
            self.optimizer = tf.train.AdamOptimizer(
                learning_rate=self.lr).apply_gradients(
                    zip(self.gradients, tf.trainable_variables()),
                    name="train_step",
                    global_step=self.iteration)

            self.saver = tf.train.Saver(max_to_keep=self.cfg.max_ckpt_to_keep)
            self.summaries = tf.summary.merge_all()

        logging.info('Done')
Example #9
0
        for l in zip(model.metrics_names, logs):
            named_logs[prefix+l[0]] = l[1]
        return named_logs

    checkpoint_path = "saved_models/ResNet_sp/checkpoints"
    os.makedirs(checkpoint_path, exist_ok=True)
    latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path)
    model.load_weights(latest_checkpoint)

    h5 = tables.open_file("database.h5",'r')
    train_table = h5.get_node("/train/specs")
    val_table = h5.get_node("/val/specs")
    test_table = h5.get_node("/test/specs")


    train_generator = BatchGenerator(train_table, 128, transform_batch, y_field="sp", shuffle=True, refresh_on_epoch_end=True )
    val_generator = BatchGenerator(val_table, 128, transform_batch, y_field="sp",  shuffle=True, refresh_on_epoch_end=True )
    test_generator = BatchGenerator(train_table, 128, transform_batch, y_field="sp", shuffle=True, refresh_on_epoch_end=True )


    metrics_names = model.metrics_names

    for epoch in range(20):
        #Reset the metric accumulators
        model.reset_metrics()
            
        for train_batch_id in range(train_generator.n_batches):
            train_X, train_Y = next(train_generator)  
            train_result = model.train_on_batch(train_X, train_Y)
            
Example #10
0
def main():
    config = get_arg()
    config.save_folder = os.path.join(config.save_folder, config.model)
    if not os.path.exists(config.save_folder):
        os.makedirs(config.save_folder)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if device == "cuda":
        torch.set_default_tensor_type("torch.cuda.FloatTensor")
    else:
        torch.set_default_tensor_type("torch.FloatTensor")

    # Traindataset = featDataset(mode="train", feat_model=config.model)
    num_classes = 11
    actions_dict = {
        "opening": 0,
        "moving": 1,
        "hidden": 2,
        "painting": 3,
        "battle": 4,
        "respawn": 5,
        "superjump": 6,
        "object": 7,
        "special": 8,
        "map": 9,
        "ending": 10,
    }
    gt_path = "../../../data/training/feature_ext/vgg"
    features_path = "../../../data/training/feature_ext/vgg"
    Traindataset = BatchGenerator(num_classes, actions_dict, gt_path,
                                  features_path)
    Traindataset.read_data()
    Testdataset = BatchGenerator(num_classes, actions_dict, gt_path,
                                 features_path)
    Testdataset.read_data(mode="test")

    # while Traindataset.has_next():
    #     batch_input, batch_target = Traindataset.next_batch(config.batch_size)

    # Testdataset = featDataset(mode="test", feat_model=config.model)
    # model = featModel(input_channel=1280)
    num_stages = 2
    num_layers = 2
    num_f_maps = 8
    features_dim = 4
    num_f_maps = 64
    features_dim = 512 * 8 * 8
    # num_f_maps = 512 * 8 * 8
    # features_dim = 2048

    # model = MultiStageModel(
    #     num_stages, num_layers, num_f_maps, features_dim, num_classes
    # )
    model = TCN(features_dim, 11, [20])

    model = model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=config.lr)
    criterion = nn.CrossEntropyLoss()

    best_eval = 0
    for epoch in range(1, 1 + config.epochs):
        print("epoch:", epoch)
        t0 = time.time()
        train(
            model=model,
            optimizer=optimizer,
            criterion=criterion,
            dataset=Traindataset,
            config=config,
            device=device,
            # dataset_perm=dataset_perm,
        )
        t1 = time.time()
        print("\ntraining time :", round(t1 - t0))

        best_eval = test(
            model=model,
            dataset=Testdataset,
            config=config,
            device=device,
            best_eval=best_eval,
        )