Example #1
0
    def _load_standard_coordinates(self, etc_path, coord_setting):
        """
        """
        print('Loading coordinates settings..')
        paths = utils.generate_filepaths(etc_path,
                                         pattern=coord_setting,
                                         endswith='.txt')
        settings = {}
        for p in paths:
            file_name = os.path.basename(p).replace('.txt', '')
            file_name = file_name.replace(coord_setting, 'array')
            settings[file_name] = np_txt_reader(p)

        self.set_attributes(self, **settings)
Example #2
0
    def _load_settings(self, etc_path):
        """
        :param etc_path: str, local path to settings
        :return: Updates attributes of self
        """
        print('Loading tiff settings..')
        paths = utils.generate_filepaths(etc_path, pattern='.tiff')
        settings = {}
        for p in paths:
            file_name = os.path.basename(p).replace('.tiff', '')
            settings[file_name], settings[file_name + '_meta'] = raster_reader(
                p, include_meta=True)

        self.set_attributes(self, **settings)
#                   writer='raster')

if __name__ == "__main__":
    # Set path to data directory
    data_path = 'C:\\Temp\\baws_reanalys\\tiff_archive'

    # Create the Session object
    s = Session(data_path=data_path)

    # If we want to save data to a specific location, we set the export path here.
    # s.setting.set_export_directory(path=None)
    for year in range(2002, 2010):
        year = str(year)

        # Generate filepaths
        generator = generate_filepaths(s.data_path,
                                       pattern='cyano_daymap_' + year,
                                       endswith='.tiff',
                                       only_from_dir=True)

        # Loop through the file-generator and aggregate the data.
        # aggregation is a numpy 2d-array
        aggregation = raster_aggregation(generator)

        # Export the aggragation in a tiff file.
        # WARNING! tiff files only handles integer data with values <=100.
        # The benefit of tiff-files are the super compressed format
        s.export_data(data=aggregation,
                      file_name='aggregation_%s.tiff' % year,
                      writer='raster')
"""
from bawsvis.utils import generate_filepaths
from bawsvis.session import Session
from bawsvis.data_handler import aggregation_annuals


if __name__ == "__main__":
    # Set path to data directory
    data_path = 'C:\\Utveckling\\BAWS-vis\\bawsvis\\export'

    # Create the Session object
    s = Session(data_path=data_path)

    # Generate filepaths
    generator = generate_filepaths(s.data_path,
                                   pattern='Cumu_',
                                   endswith='.txt',
                                   only_from_dir=True)

    # Loop through the file-generator and aggregate the data.
    # aggregation is a numpy 2d-array
    aggregation = aggregation_annuals(generator, reader='text')

    # Export the aggragation in a tiff file.
    # WARNING! tiff files only handles integer data with values <=100.
    # The benefit of tiff-files are the super compressed format
    s.export_data(data=aggregation,
                  file_name='period_aggregation.txt',
                  writer='text')
from bawsvis.session import Session
from bawsvis.data_handler import get_daily_stats, get_weekly_stats

if __name__ == "__main__":
    # Set path to data directory
    data_path = '...\\Manuell_algtolkning'

    # Create the Session object
    s = Session(data_path=data_path)

    # If we want to save data to a specific location, we set the export path here.
    # s.setting.set_export_directory(path=None)

    # Generate filepaths (daily)
    generator = generate_filepaths(s.setting.export_directory,
                                   pattern='cyano_daymap_',
                                   endswith='.shp',
                                   only_from_dir=True)

    # Loop through the file-generator and aggregate the data.
    stats_daily = get_daily_stats(generator)

    # Generate filepaths (weekly)
    generator = generate_filepaths(s.data_path,
                                   pattern='cyano_weekmap_',
                                   endswith='.shp',
                                   only_from_dir=True)

    # Loop through the file-generator and aggregate the data.
    stats_weekly = get_weekly_stats(generator)

    stats = recursive_dict_update(stats_daily, stats_weekly)
from bawsvis.utils import generate_filepaths
from bawsvis.session import Session
from bawsvis.data_handler import raster_aggregation

if __name__ == "__main__":
    # Set path to data directory
    data_path = 'E:\\Johannes_exjobb\\MODIS_data\\outdata\\attribute_data\\BAWS'

    # Create the Session object
    s = Session(data_path=data_path)

    # If we want to save data to a specific location, we set the export path here.
    # s.setting.set_export_directory(path=None)
    for year in range(2019, 2021):
        year = str(year)

        # Generate filepaths
        generator = generate_filepaths(s.data_path,
                                       pattern='BAWS_' + year,
                                       endswith='.txt',
                                       only_from_dir=False)

        # Loop through the file-generator and aggregate the data.
        # aggregation is a numpy 2d-array
        aggregation = raster_aggregation(generator, reader='text')

        # Export the aggragation
        s.export_data(data=aggregation,
                      file_name='aggregation_%s.txt' % year,
                      writer='text')