Example #1
0
        def check(D, N, K, mu=None, Lambda=None, rho=None):

            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)

            V = np.identity(D) + np.ones((D, D))

            # Construct model
            B = GaussianARD(3, 5, shape=(D, K), plates=(1, D))
            S = GaussianARD(2, 4, shape=(K, ), plates=(N, 1))
            A = SumMultiply('dk,k->d', B, S)
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N + 1,
                                    initialize=False)
            Y = Gaussian(X, V, initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(N + 1, D))
            X.update()
            B.update()
            S.update()
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotB = RotateGaussianARD(B, axis=-2)
            rotX = RotateVaryingMarkovChain(X, B, S, rotB)
            rotX.setup()

            # Check gradient with respect to R
            R = np.random.randn(D, D)

            def cost(r):
                (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                return (b, np.ravel(dr))

            err = optimize.check_gradient(cost, np.ravel(R), verbose=False)
            self.assertAllClose(err, 0, atol=1e-6, msg="Gradient incorrect")

            return
Example #2
0
        def check(D, N, mu=None, Lambda=None, rho=None, A=None):
            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)
            if A is None:
                A = GaussianARD(3, 5, shape=(D, ), plates=(D, ))

            V = np.identity(D) + np.ones((D, D))

            # Construct model
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N + 1,
                                    initialize=False)
            Y = Gaussian(X, V, initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(*(Y.get_shape(0))))
            X.update()
            try:
                A.update()
            except:
                pass
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotA = RotateGaussianARD(A, axis=-1)
            rotX = RotateGaussianMarkovChain(X, rotA)
            rotX.setup()

            # Check gradient with respect to R
            R = np.random.randn(D, D)

            def cost(r):
                (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                return (b, np.ravel(dr))

            err = optimize.check_gradient(cost, np.ravel(R), verbose=False)
            self.assertAllClose(err, 0, atol=1e-5, msg="Gradient incorrect")

            return
Example #3
0
        def check(D, N, K, mu=None, Lambda=None, rho=None):

            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)

            V = np.identity(D) + np.ones((D, D))

            # Construct model
            B = GaussianARD(3, 5, shape=(D, K), plates=(1, D))
            S = GaussianARD(2, 4, shape=(K, ), plates=(N, 1))
            A = SumMultiply('dk,k->d', B, S)
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N + 1,
                                    initialize=False)
            Y = Gaussian(X, V, initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(N + 1, D))
            X.update()
            B.update()
            S.update()
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotB = RotateGaussianARD(B, axis=-2)
            rotX = RotateVaryingMarkovChain(X, B, S, rotB)

            # Rotation
            true_cost0 = X.lower_bound_contribution()
            rotX.setup()
            I = np.identity(D)
            R = np.random.randn(D, D)
            rot_cost0 = rotX.get_bound_terms(I)
            rot_cost1 = rotX.get_bound_terms(R)
            self.assertAllClose(sum(rot_cost0.values()),
                                rotX.bound(I)[0],
                                msg="Bound terms and total bound differ")
            self.assertAllClose(sum(rot_cost1.values()),
                                rotX.bound(R)[0],
                                msg="Bound terms and total bound differ")
            rotX.rotate(R)
            true_cost1 = X.lower_bound_contribution()
            self.assertAllClose(true_cost1 - true_cost0,
                                rot_cost1[X] - rot_cost0[X],
                                msg="Incorrect rotation cost for X")

            return
Example #4
0
        def check(D, N, mu=None, Lambda=None, rho=None, A=None):
            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)
            if A is None:
                A = GaussianARD(3, 5, shape=(D, ), plates=(D, ))

            V = np.identity(D) + np.ones((D, D))

            # Construct model
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N + 1,
                                    initialize=False)
            Y = Gaussian(X, V, initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(*(Y.get_shape(0))))
            X.update()
            try:
                A.update()
            except:
                pass
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotA = RotateGaussianARD(A, axis=-1)
            rotX = RotateGaussianMarkovChain(X, rotA)

            # Rotation
            true_cost0 = X.lower_bound_contribution()
            rotX.setup()
            I = np.identity(D)
            R = np.random.randn(D, D)
            rot_cost0 = rotX.get_bound_terms(I)
            rot_cost1 = rotX.get_bound_terms(R)
            self.assertAllClose(sum(rot_cost0.values()),
                                rotX.bound(I)[0],
                                msg="Bound terms and total bound differ")
            self.assertAllClose(sum(rot_cost1.values()),
                                rotX.bound(R)[0],
                                msg="Bound terms and total bound differ")
            rotX.rotate(R)
            true_cost1 = X.lower_bound_contribution()
            self.assertAllClose(true_cost1 - true_cost0,
                                rot_cost1[X] - rot_cost0[X],
                                msg="Incorrect rotation cost for X")

            return
Example #5
0
        def test(shape,
                 plates,
                 axis=-1,
                 alpha_plates=None,
                 plate_axis=None,
                 mu=3):

            if plate_axis is not None:
                precomputes = [False, True]
            else:
                precomputes = [False]

            for precompute in precomputes:
                # Construct the model
                D = shape[axis]
                if alpha_plates is not None:
                    alpha = Gamma(2, 2, plates=alpha_plates)
                    alpha.initialize_from_random()
                else:
                    alpha = 2
                X = GaussianARD(mu, alpha, shape=shape, plates=plates)

                # Some initial learning and rotator constructing
                X.initialize_from_random()
                Y = GaussianARD(X, 1)
                Y.observe(np.random.randn(*(Y.get_shape(0))))
                X.update()
                if alpha_plates is not None:
                    alpha.update()
                    true_cost0_alpha = alpha.lower_bound_contribution()
                    rotX = RotateGaussianARD(X,
                                             alpha,
                                             axis=axis,
                                             precompute=precompute)
                else:
                    rotX = RotateGaussianARD(X,
                                             axis=axis,
                                             precompute=precompute)
                true_cost0_X = X.lower_bound_contribution()

                # Rotation matrices
                I = np.identity(D)
                R = np.random.randn(D, D)
                if plate_axis is not None:
                    C = plates[plate_axis]
                    Q = np.random.randn(C, C)
                    Ic = np.identity(C)
                else:
                    Q = None
                    Ic = None

                # Compute bound terms
                rotX.setup(plate_axis=plate_axis)
                rot_cost0 = rotX.get_bound_terms(I, Q=Ic)
                rot_cost1 = rotX.get_bound_terms(R, Q=Q)
                self.assertAllClose(sum(rot_cost0.values()),
                                    rotX.bound(I, Q=Ic)[0],
                                    msg="Bound terms and total bound differ")
                self.assertAllClose(sum(rot_cost1.values()),
                                    rotX.bound(R, Q=Q)[0],
                                    msg="Bound terms and total bound differ")
                # Perform rotation
                rotX.rotate(R, Q=Q)
                # Check bound terms
                true_cost1_X = X.lower_bound_contribution()
                self.assertAllClose(true_cost1_X - true_cost0_X,
                                    rot_cost1[X] - rot_cost0[X],
                                    msg="Incorrect rotation cost for X")
                if alpha_plates is not None:
                    true_cost1_alpha = alpha.lower_bound_contribution()
                    self.assertAllClose(
                        true_cost1_alpha - true_cost0_alpha,
                        rot_cost1[alpha] - rot_cost0[alpha],
                        msg="Incorrect rotation cost for alpha")
            return
Example #6
0
        def test(shape,
                 plates,
                 axis=-1,
                 alpha_plates=None,
                 plate_axis=None,
                 mu=3):

            if plate_axis is not None:
                precomputes = [False, True]
            else:
                precomputes = [False]

            for precompute in precomputes:
                # Construct the model
                D = shape[axis]
                if alpha_plates is not None:
                    alpha = Gamma(3, 5, plates=alpha_plates)
                    alpha.initialize_from_random()
                else:
                    alpha = 2
                X = GaussianARD(mu, alpha, shape=shape, plates=plates)

                # Some initial learning and rotator constructing
                X.initialize_from_random()
                Y = GaussianARD(X, 1)
                Y.observe(np.random.randn(*(Y.get_shape(0))))
                X.update()
                if alpha_plates is not None:
                    alpha.update()
                    rotX = RotateGaussianARD(X,
                                             alpha,
                                             axis=axis,
                                             precompute=precompute)
                else:
                    rotX = RotateGaussianARD(X,
                                             axis=axis,
                                             precompute=precompute)
                try:
                    mu.update()
                except:
                    pass

                # Rotation matrices
                R = np.random.randn(D, D)
                if plate_axis is not None:
                    C = plates[plate_axis]
                    Q = np.random.randn(C, C)
                else:
                    Q = None

                # Compute bound terms
                rotX.setup(plate_axis=plate_axis)

                if plate_axis is None:

                    def f_r(r):
                        (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                        return (b, np.ravel(dr))
                else:

                    def f_r(r):
                        (b, dr, dq) = rotX.bound(np.reshape(r, np.shape(R)),
                                                 Q=Q)
                        return (b, np.ravel(dr))

                    def f_q(q):
                        (b, dr, dq) = rotX.bound(R,
                                                 Q=np.reshape(q, np.shape(Q)))
                        return (b, np.ravel(dq))

                # Check gradient with respect to R
                err = optimize.check_gradient(f_r, np.ravel(R), verbose=False)
                self.assertAllClose(err,
                                    0,
                                    atol=1e-4,
                                    msg="Gradient incorrect for R")

                # Check gradient with respect to Q
                if plate_axis is not None:
                    err = optimize.check_gradient(f_q,
                                                  np.ravel(Q),
                                                  verbose=False)
                    self.assertAllClose(err,
                                        0,
                                        atol=1e-4,
                                        msg="Gradient incorrect for Q")

            return
        def check(D, N, K,
                  mu=None,
                  Lambda=None,
                  rho=None):

            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)

            V = np.identity(D) + np.ones((D,D))

            # Construct model
            B = GaussianARD(3, 5,
                            shape=(D,K),
                            plates=(1,D))
            S = GaussianARD(2, 4,
                            shape=(K,),
                            plates=(N,1))
            A = SumMultiply('dk,k->d', B, S)
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N+1,
                                    initialize=False)
            Y = Gaussian(X,
                         V,
                         initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(N+1,D))
            X.update()
            B.update()
            S.update()
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotB = RotateGaussianARD(B, axis=-2)
            rotX = RotateVaryingMarkovChain(X, B, S, rotB)

            # Rotation
            true_cost0 = X.lower_bound_contribution()
            rotX.setup()
            I = np.identity(D)
            R = np.random.randn(D, D)
            rot_cost0 = rotX.get_bound_terms(I)
            rot_cost1 = rotX.get_bound_terms(R)
            self.assertAllClose(sum(rot_cost0.values()),
                                rotX.bound(I)[0],
                                    msg="Bound terms and total bound differ")
            self.assertAllClose(sum(rot_cost1.values()),
                                rotX.bound(R)[0],
                                msg="Bound terms and total bound differ")
            rotX.rotate(R)
            true_cost1 = X.lower_bound_contribution()
            self.assertAllClose(true_cost1 - true_cost0,
                                rot_cost1[X] - rot_cost0[X],
                                msg="Incorrect rotation cost for X")
            
            return
        def check(D, N, mu=None, Lambda=None, rho=None, A=None):
            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)
            if A is None:
                A = GaussianARD(3, 5,
                                shape=(D,),
                                plates=(D,))
                
            V = np.identity(D) + np.ones((D,D))

            # Construct model
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N+1,
                                    initialize=False)
            Y = Gaussian(X,
                         V,
                         initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(*(Y.get_shape(0))))
            X.update()
            try:
                A.update()
            except:
                pass
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotA = RotateGaussianARD(A, axis=-1)
            rotX = RotateGaussianMarkovChain(X, rotA)
            rotX.setup()

            # Check gradient with respect to R
            R = np.random.randn(D, D)
            def cost(r):
                (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                return (b, np.ravel(dr))

            err = optimize.check_gradient(cost, 
                                          np.ravel(R), 
                                          verbose=False)[1]
            self.assertAllClose(err, 0, 
                                atol=1e-5,
                                msg="Gradient incorrect")
            
            return
        def check(D, N, mu=None, Lambda=None, rho=None, A=None):
            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)
            if A is None:
                A = GaussianARD(3, 5,
                                shape=(D,),
                                plates=(D,))
                
            V = np.identity(D) + np.ones((D,D))

            # Construct model
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N+1,
                                    initialize=False)
            Y = Gaussian(X,
                         V,
                         initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(*(Y.get_shape(0))))
            X.update()
            try:
                A.update()
            except:
                pass
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotA = RotateGaussianARD(A, axis=-1)
            rotX = RotateGaussianMarkovChain(X, rotA)

            # Rotation
            true_cost0 = X.lower_bound_contribution()
            rotX.setup()
            I = np.identity(D)
            R = np.random.randn(D, D)
            rot_cost0 = rotX.get_bound_terms(I)
            rot_cost1 = rotX.get_bound_terms(R)
            self.assertAllClose(sum(rot_cost0.values()),
                                rotX.bound(I)[0],
                                    msg="Bound terms and total bound differ")
            self.assertAllClose(sum(rot_cost1.values()),
                                rotX.bound(R)[0],
                                msg="Bound terms and total bound differ")
            rotX.rotate(R)
            true_cost1 = X.lower_bound_contribution()
            self.assertAllClose(true_cost1 - true_cost0,
                                rot_cost1[X] - rot_cost0[X],
                                msg="Incorrect rotation cost for X")
            
            return
        def test(shape, plates, 
                 axis=-1, 
                 alpha_plates=None, 
                 plate_axis=None,
                 mu=3):

            if plate_axis is not None:
                precomputes = [False, True]
            else:
                precomputes = [False]
                
            for precompute in precomputes:
                # Construct the model
                D = shape[axis]
                if alpha_plates is not None:
                    alpha = Gamma(2, 2,
                                  plates=alpha_plates)
                    alpha.initialize_from_random()
                else:
                    alpha = 2
                X = GaussianARD(mu, alpha,
                                shape=shape,
                                plates=plates)

                # Some initial learning and rotator constructing
                X.initialize_from_random()
                Y = GaussianARD(X, 1)
                Y.observe(np.random.randn(*(Y.get_shape(0))))
                X.update()
                if alpha_plates is not None:
                    alpha.update()
                    true_cost0_alpha = alpha.lower_bound_contribution()
                    rotX = RotateGaussianARD(X, alpha, 
                                             axis=axis,
                                             precompute=precompute)
                else:
                    rotX = RotateGaussianARD(X, 
                                             axis=axis,
                                             precompute=precompute)
                true_cost0_X = X.lower_bound_contribution()

                # Rotation matrices
                I = np.identity(D)
                R = np.random.randn(D, D)
                if plate_axis is not None:
                    C = plates[plate_axis]
                    Q = np.random.randn(C, C)
                    Ic = np.identity(C)
                else:
                    Q = None
                    Ic = None

                # Compute bound terms
                rotX.setup(plate_axis=plate_axis)
                rot_cost0 = rotX.get_bound_terms(I, Q=Ic)
                rot_cost1 = rotX.get_bound_terms(R, Q=Q)
                self.assertAllClose(sum(rot_cost0.values()),
                                    rotX.bound(I, Q=Ic)[0],
                                    msg="Bound terms and total bound differ")
                self.assertAllClose(sum(rot_cost1.values()),
                                    rotX.bound(R, Q=Q)[0],
                                    msg="Bound terms and total bound differ")
                # Perform rotation
                rotX.rotate(R, Q=Q)
                # Check bound terms
                true_cost1_X = X.lower_bound_contribution()
                self.assertAllClose(true_cost1_X - true_cost0_X,
                                    rot_cost1[X] - rot_cost0[X],
                                    msg="Incorrect rotation cost for X")
                if alpha_plates is not None:
                    true_cost1_alpha = alpha.lower_bound_contribution()
                    self.assertAllClose(true_cost1_alpha - true_cost0_alpha,
                                        rot_cost1[alpha] - rot_cost0[alpha],
                                        msg="Incorrect rotation cost for alpha")
            return
        def test(shape, plates, 
                 axis=-1, 
                 alpha_plates=None, 
                 plate_axis=None,
                 mu=3):
            
            if plate_axis is not None:
                precomputes = [False, True]
            else:
                precomputes = [False]
                
            for precompute in precomputes:
                # Construct the model
                D = shape[axis]
                if alpha_plates is not None:
                    alpha = Gamma(3, 5,
                                  plates=alpha_plates)
                    alpha.initialize_from_random()
                else:
                    alpha = 2
                X = GaussianARD(mu, alpha,
                                shape=shape,
                                plates=plates)

                # Some initial learning and rotator constructing
                X.initialize_from_random()
                Y = GaussianARD(X, 1)
                Y.observe(np.random.randn(*(Y.get_shape(0))))
                X.update()
                if alpha_plates is not None:
                    alpha.update()
                    rotX = RotateGaussianARD(X, alpha, 
                                             axis=axis,
                                             precompute=precompute)
                else:
                    rotX = RotateGaussianARD(X, 
                                             axis=axis,
                                             precompute=precompute)
                try:
                    mu.update()
                except:
                    pass

                # Rotation matrices
                R = np.random.randn(D, D)
                if plate_axis is not None:
                    C = plates[plate_axis]
                    Q = np.random.randn(C, C)
                else:
                    Q = None

                # Compute bound terms
                rotX.setup(plate_axis=plate_axis)

                if plate_axis is None:
                    def f_r(r):
                        (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                        return (b, np.ravel(dr))
                else:
                    def f_r(r):
                        (b, dr, dq) = rotX.bound(np.reshape(r, np.shape(R)),
                                             Q=Q)
                        return (b, np.ravel(dr))

                    def f_q(q):
                        (b, dr, dq) = rotX.bound(R,
                                             Q=np.reshape(q, np.shape(Q)))
                        return (b, np.ravel(dq))

                # Check gradient with respect to R
                err = optimize.check_gradient(f_r, 
                                              np.ravel(R), 
                                              verbose=False)[1]
                self.assertAllClose(err, 0, 
                                    atol=1e-4,
                                    msg="Gradient incorrect for R")

                # Check gradient with respect to Q
                if plate_axis is not None:
                    err = optimize.check_gradient(f_q, 
                                                  np.ravel(Q), 
                                                  verbose=False)[1]
                    self.assertAllClose(err, 0,
                                        atol=1e-4,
                                        msg="Gradient incorrect for Q")

            return
        def check(D, N, K,
                  mu=None,
                  Lambda=None,
                  rho=None):

            if mu is None:
                mu = np.zeros(D)
            if Lambda is None:
                Lambda = np.identity(D)
            if rho is None:
                rho = np.ones(D)

            V = np.identity(D) + np.ones((D,D))

            # Construct model
            B = GaussianARD(3, 5,
                            shape=(D,K),
                            plates=(1,D))
            S = GaussianARD(2, 4,
                            shape=(K,),
                            plates=(N,1))
            A = SumMultiply('dk,k->d', B, S)
            X = GaussianMarkovChain(mu,
                                    Lambda,
                                    A,
                                    rho,
                                    n=N+1,
                                    initialize=False)
            Y = Gaussian(X,
                         V,
                         initialize=False)

            # Posterior estimation
            Y.observe(np.random.randn(N+1,D))
            X.update()
            B.update()
            S.update()
            try:
                mu.update()
            except:
                pass
            try:
                Lambda.update()
            except:
                pass
            try:
                rho.update()
            except:
                pass

            # Construct rotator
            rotB = RotateGaussianARD(B, axis=-2)
            rotX = RotateVaryingMarkovChain(X, B, S, rotB)
            rotX.setup()

            # Check gradient with respect to R
            R = np.random.randn(D, D)
            def cost(r):
                (b, dr) = rotX.bound(np.reshape(r, np.shape(R)))
                return (b, np.ravel(dr))

            err = optimize.check_gradient(cost, 
                                          np.ravel(R), 
                                          verbose=False)[1]
            self.assertAllClose(err, 0, 
                                atol=1e-6,
                                msg="Gradient incorrect")
            
            return