Example #1
0
def main():

    parser = MyParser()
    parser.add_argument('config_fname',
                        help="full path to config filename",
                        nargs='?',
                        type=str)
    parser.add_argument('redshift',
                        help="central redshift for plotting spectrum",
                        nargs='?',
                        type=float)
    parser.add_argument('dv',
                        help="velocity range for spectrum (+/-dv)",
                        nargs='?',
                        type=float)
    #parser.add_argument("--truths", nargs='+', type=float)
    parser.add_argument('-t',
                        "--test",
                        help="plot data product of test",
                        action="store_true")

    args = parser.parse_args()

    if len(sys.argv) < 4 and not args.test:
        parser.print_help(sys.stderr)
        sys.exit(1)

    if args.test:
        from bayesvp.utilities import get_bayesvp_Dir
        path = get_bayesvp_Dir()
        config_fname = path + '/data/example/config_OVI.dat'

        config_param = DefineParams(config_fname)
        args.redshift = 0.0
        args.dv = 300.0

    else:
        if os.path.isfile(args.config_fname):
            config_param = DefineParams(args.config_fname)
        else:
            sys.exit('Config file does not exist:\n %s' % args.config_fname)

    output_model = ProcessModel(config_param)
    output_model.spline_binned_pdf()
    output_model.plot_model_comparison(args.redshift, args.dv)
    output_model.write_model_summary()
    output_model.write_model_spectrum()
    output_model.plot_gr_indicator()
    #output_model.corner_plot(nbins=30,truths=args.truths)
    output_model.corner_plot(nbins=30)
Example #2
0
    def setUp(self):

        # read example config file
        code_path = get_bayesvp_Dir()
        self.config_ex = code_path + '/data/example/config_OVI.dat'
        self.config_params = DefineParams(self.config_ex)
        self.posterior = Posterior(self.config_params)
Example #3
0
def bvp_process(config_fname, redshift, dv):
    config_param = DefineParams(config_fname)

    output_model = ProcessModel(config_param)
    output_model.spline_binned_pdf()
    output_model.plot_model_comparison(redshift, dv)
    output_model.write_model_summary()
    output_model.write_model_spectrum()
    output_model.plot_gr_indicator()
    output_model.corner_plot(nbins=30)

    return None
Example #4
0
# from bayesvp.vp_model import simple_spec
#-------------------------------------------------------------

# set the path of the data

spectrum_path = '/home/tanvir/BLA_project/codes/examples/'
# spectrum_path = 'E:/TANVIR_WORK/codes/examples/'

# create a config file
config_writer = wc.WriteBayesVPConfig().print_to_file("-i")

# load the config file
config_fname = spectrum_path + 'bvp_configs/config_HI.dat'

# extract all of the relevant information using the DefineParams function
config_params = DefineParams(config_fname)

#-------- run the MCMC fit --------------------------
# fitting log is written in 'config.log' file.

start = time.time()
#
mc_single(config_params)
mcmc(config_fname)
#
end = time.time()
print((end - start) / 60.)
#-----------------------------------------------------------
# The fitting process after the step is completed. The output chain is a binary file which ends with .npy
# contains all the information that we need.
# ---- read the .npy file ------
Example #5
0
from bayesvp.mcmc_setup import bvp_mcmc as mcmc
from bayesvp.config import DefineParams
from bayesvp.scripts import bvp_process_model

config_file = '/home/vikram/BLA_hub/test_vikram/hi_config.dat'

# the mcmc fit
mcmc(config_file, print_config=True)

# after the chains
x = DefineParams(config_file)
op = bvp_process_model.ProcessModel(x)
op.plot_model_comparison(0.081, 400)
op.write_model_summary()
op.write_model_spectrum()
op.plot_gr_indicator()
op.corner_plot()
Example #6
0
 def setUp(self):
     code_path = get_bayesvp_Dir()
     # read example config file
     self.config_ex = code_path + '/data/example/config_OVI.dat'
     self.config_params = DefineParams(self.config_ex)
Example #7
0
def bvp_mcmc(config_fname, print_config=False):
    """
	Run fixed number of component fit specified by the 
	config file or make copies of the configs and run up 
	to the maximum number of components until the best model 
	is found.

	Parameters:
	-----------
	config_fname: str
		Full path + the file name
		See ./readme.md for detaieded structure of the config file

	Returns
	-----------
	chains: python format (.npy) binary file 
		One or more chains for each MCMC run.  
	"""

    # Determine if config is set to automatically choose the best model
    # If so, create multiple configs file specified by n_component_max
    auto_vp, n_component_min, n_component_max = determine_autovp(config_fname)

    if auto_vp:
        model_evidence = np.zeros(n_component_max - n_component_min + 1)
        for n in xrange(n_component_max - n_component_min + 1):

            # Get new config filename;
            basename_with_path, config_extension = os.path.splitext(
                config_fname)
            config_fname_ncomp = (basename_with_path +
                                  str(n + n_component_min) + config_extension)

            # Load config parameter object
            config_params = DefineParams(config_fname_ncomp)

            # Run MCMC
            bvp_mcmc_single(config_params, config_params.chain_fname)

            # compute values of aic, bic or bf
            model_evidence[n] = model_info_criterion(config_params)
            components_count = np.arange(n_component_min, n_component_max + 1)

            # compare with the previous fit
            if 0 < n <= n_component_max - 1:

                #if config_params.model_selection.lower() in ('odds','bf'):
                #	index = np.where(model_evidence[:n+1] == np.max(model_evidence[:n+1]))[0]

                if config_params.model_selection.lower() in ('aic', 'bic'):
                    index = np.where(
                        model_evidence[:n + 1] == np.min(model_evidence[:n +
                                                                        1]))[0]

                # Compare BIC/AIC/Odds ratios
                if compare_model(model_evidence[n - 1], model_evidence[n],
                                 config_params.model_selection):
                    np.savetxt(config_params.mcmc_outputpath + '/' +
                               config_params.model_selection + '_' +
                               config_params.chain_short_fname[:-1] + '.dat',
                               np.c_[components_count[:n + 1],
                                     model_evidence[:n + 1]],
                               fmt=('%d', '%.4f'),
                               header='nComponents\tValues')
                    break
    else:
        # Load config parameter object
        config_params = DefineParams(config_fname)

        if print_config:
            config_params.print_config_params()

        # Run fit as specified in config
        bvp_mcmc_single(config_params)