if 1 < 3: print ("Post-processing: will generate output " + "data in folder %s" % outputdir) print " this might take several minutes." if not os.path.exists(outputdir): os.makedirs(outputdir) if verbose: print 'Folder %s was created.' % (outputdir) # prepend the algorithm name command to the tex-command file abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' lines = [] for i, alg in enumerate(args): lines.append('\\providecommand{\\algorithm' + abc[i] + '}{' + str_to_latex(strip_pathname2(alg)) + '}') prepend_to_file(os.path.join(outputdir, 'bbob_pproc_commands.tex'), lines, 5000, 'bbob_proc_commands.tex truncated, consider removing the file before the text run' ) dsList, sortedAlgs, dictAlg = processInputArgs(args, verbose=verbose) if not dsList: sys.exit() for i in dictAlg: if isNoisy and not isNoiseFree: dictAlg[i] = dictAlg[i].dictByNoise().get('nzall', DataSetList()) if isNoiseFree and not isNoisy: dictAlg[i] = dictAlg[i].dictByNoise().get('noiselessall', DataSetList())
def main(dictAlg, order=None, outputdir='.', info='default', dimension=None, verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config global divide_by_dimension # not fully implemented/tested yet if 'x_limit' not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1 and dimension is None: raise ValueError('We never integrate over dimension.') if dimension is not None: if dimension not in tmp.keys(): raise ValueError('dimension %d not in dictAlg dimensions %s' % (dimension, str(tmp.keys()))) tmp = {dimension: tmp[dimension]} dim = tmp.keys()[0] divisor = dim if divide_by_dimension else 1 algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0. if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL': tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == 'noiselessall': CrE = 0.5117 elif tmp.keys()[0] == 'nzall': CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print 'Crafting effort for', alg, 'is', CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][ 0] # one element per fun and per dim. evals = entry.detEvals([t])[0] assert entry.dim == dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = entry.maxevals[np.isnan(evals)] / divisor if len(runlengthsucc) > 0: x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] except (KeyError, IndexError): #set_trace() warntxt = ( 'Data for algorithm %s on function %d in %d-D ' % (alg, f, dim) + 'are missing.\n') warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) if displaybest2009: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgentry = bestalg.bestalgentries2009[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] #set_trace() assert dim == bestalgentry.dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = bestalgentry.maxevals[ bestalgevals[1][j]][np.isnan(evals)] / divisor x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = { 'ls': '-', 'linewidth': 6, 'marker': 'D', 'markersize': 11., 'markeredgewidth': 1.5, 'markerfacecolor': refcolor, 'markeredgecolor': refcolor, 'color': refcolor, 'label': 'best 2009', 'zorder': -1 } lines.append( plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE=0., **args)) def algname_to_label(algname, dirname=None): """to be extended to become generally useful""" if isinstance(algname, (tuple, list)): # not sure this is needed return ' '.join([str(name) for name in algname]) return str(algname) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args['linewidth'] = 1.5 args['markersize'] = 12. args['markeredgewidth'] = 1.5 args['markerfacecolor'] = 'None' args['markeredgecolor'] = args['color'] args['label'] = algname_to_label(alg) #args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib #elif len(show_algorithms) > 0: #args['color'] = 'wheat' #args['ls'] = '-' #args['zorder'] = -1 # plotdata calls pprldistr.plotECDF which calls ppfig.plotUnifLog... which does the work lines.append( plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: # isLateXLeg: fileName = os.path.join(outputdir, 'pprldmany_%s.tex' % (info)) with open(fileName, 'w') as f: f.write(r'\providecommand{\nperfprof}{7}') algtocommand = {} # latex commands for i, alg in enumerate(order): tmp = r'\alg%sperfprof' % pptex.numtotext(i) f.write( r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' % (tmp, toolsdivers.str_to_latex( toolsdivers.strip_pathname2(algname_to_label(alg))))) algtocommand[algname_to_label(alg)] = tmp if displaybest2009: tmp = r'\algzeroperfprof' f.write(r'\providecommand{%s}{best 2009}' % (tmp)) algtocommand['best 2009'] = tmp commandnames = [] for label in labels: commandnames.append(algtocommand[label]) # f.write(headleg) if len( order ) > 28: # latex sidepanel won't work well for more than 25 algorithms, but original labels are also clipped f.write( r'\providecommand{\perfprofsidepanel}{\mbox{%s}\vfill\mbox{%s}}' % (commandnames[0], commandnames[-1])) else: fontsize_command = r'\tiny{}' if len(order) > 19 else '' f.write(r'\providecommand{\perfprofsidepanel}{{%s\mbox{%s}' % (fontsize_command, commandnames[0])) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write('\n' + r'\vfill \mbox{%s}' % commandnames[i]) f.write('}}\n') # f.write(footleg) if verbose: print 'Wrote right-hand legend in %s' % fileName figureName = os.path.join(outputdir, 'pprldmany_%s' % (info)) #beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = 'f%s' % (ppfig.consecutiveNumbers(sorted(dictFunc.keys()))) text += ',%d-D' % dim # TODO: this is strange when different dimensions are plotted plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) if len(dictFunc) == 1: plt.title(' '.join( (str(dictFunc.keys()[0]), genericsettings.current_testbed.short_names[dictFunc.keys()[0]]))) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit**annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append('%d' % round(np.log10(i))) a.set_xticklabels(tmp) if save_figure: ppfig.saveFigure(figureName, verbose=verbose) if len(dictFunc) == 1: ppfig.save_single_functions_html( os.path.join(outputdir, 'pprldmany'), '', # algorithms names are clearly visible in the figure add_to_names='_%02dD' % (dim), algorithmCount=ppfig.AlgorithmCount.NON_SPECIFIED) if close_figure: plt.close()
if 1 < 3: print("Post-processing: will generate output " + "data in folder %s" % outputdir) print " this might take several minutes." if not os.path.exists(outputdir): os.makedirs(outputdir) if verbose: print 'Folder %s was created.' % (outputdir) # prepend the algorithm name command to the tex-command file abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' lines = [] for i, alg in enumerate(args): lines.append('\\providecommand{\\algorithm' + abc[i] + '}{' + str_to_latex(strip_pathname2(alg)) + '}') prepend_to_file( os.path.join(outputdir, 'bbob_pproc_commands.tex'), lines, 5000, 'bbob_proc_commands.tex truncated, consider removing the file before the text run' ) dsList, sortedAlgs, dictAlg = processInputArgs(args, verbose=verbose) if not dsList: sys.exit() for i in dictAlg: if isNoisy and not isNoiseFree: dictAlg[i] = dictAlg[i].dictByNoise().get( 'nzall', DataSetList()) if isNoiseFree and not isNoisy:
def main(dictAlg, isBiobjective, order=None, outputdir='.', info='default', dimension=None, verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config global divide_by_dimension # not fully implemented/tested yet if 'x_limit' not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1 and dimension is None: raise ValueError('We never integrate over dimension.') if dimension is not None: if dimension not in tmp.keys(): raise ValueError('dimension %d not in dictAlg dimensions %s' % (dimension, str(tmp.keys()))) tmp = {dimension: tmp[dimension]} dim = tmp.keys()[0] divisor = dim if divide_by_dimension else 1 algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0. if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL': tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == 'noiselessall': CrE = 0.5117 elif tmp.keys()[0] == 'nzall': CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print 'Crafting effort for', alg, 'is', CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][0] # one element per fun and per dim. evals = entry.detEvals([t])[0] assert entry.dim == dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = entry.maxevals[np.isnan(evals)] / divisor if len(runlengthsucc) > 0: x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] except (KeyError, IndexError): #set_trace() warntxt = ('Data for algorithm %s on function %d in %d-D ' % (alg, f, dim) + 'are missing.\n') warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) displaybest2009 = not isBiobjective #disabled until we find the bug if displaybest2009: #set_trace() bestalgentries = bestalg.loadBestAlgorithm(isBiobjective) bestalgentry = bestalgentries[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] #set_trace() assert dim == bestalgentry.dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = bestalgentry.maxevals[bestalgevals[1][j]][np.isnan(evals)] / divisor x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = {'ls': '-', 'linewidth': 6, 'marker': 'D', 'markersize': 11., 'markeredgewidth': 1.5, 'markerfacecolor': refcolor, 'markeredgecolor': refcolor, 'color': refcolor, 'label': 'best 2009', 'zorder': -1} lines.append(plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE = 0., **args)) def algname_to_label(algname, dirname=None): """to be extended to become generally useful""" if isinstance(algname, (tuple, list)): # not sure this is needed return ' '.join([str(name) for name in algname]) return str(algname) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args['linewidth'] = 1.5 args['markersize'] = 12. args['markeredgewidth'] = 1.5 args['markerfacecolor'] = 'None' args['markeredgecolor'] = args['color'] args['label'] = algname_to_label(alg) #args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib #elif len(show_algorithms) > 0: #args['color'] = 'wheat' #args['ls'] = '-' #args['zorder'] = -1 # plotdata calls pprldistr.plotECDF which calls ppfig.plotUnifLog... which does the work lines.append(plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: # isLateXLeg: fileName = os.path.join(outputdir,'pprldmany_%s.tex' % (info)) with open(fileName, 'w') as f: f.write(r'\providecommand{\nperfprof}{7}') algtocommand = {} # latex commands for i, alg in enumerate(order): tmp = r'\alg%sperfprof' % pptex.numtotext(i) f.write(r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' % (tmp, toolsdivers.str_to_latex( toolsdivers.strip_pathname2(algname_to_label(alg))))) algtocommand[algname_to_label(alg)] = tmp if displaybest2009: tmp = r'\algzeroperfprof' f.write(r'\providecommand{%s}{best 2009}' % (tmp)) algtocommand['best 2009'] = tmp commandnames = [] for label in labels: commandnames.append(algtocommand[label]) # f.write(headleg) if len(order) > 28: # latex sidepanel won't work well for more than 25 algorithms, but original labels are also clipped f.write(r'\providecommand{\perfprofsidepanel}{\mbox{%s}\vfill\mbox{%s}}' % (commandnames[0], commandnames[-1])) else: fontsize_command = r'\tiny{}' if len(order) > 19 else '' f.write(r'\providecommand{\perfprofsidepanel}{{%s\mbox{%s}' % (fontsize_command, commandnames[0])) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write('\n' + r'\vfill \mbox{%s}' % commandnames[i]) f.write('}}\n') # f.write(footleg) if verbose: print 'Wrote right-hand legend in %s' % fileName figureName = os.path.join(outputdir,'pprldmany_%s' % (info)) #beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = ppfig.consecutiveNumbers(sorted(dictFunc.keys()), 'f') text += ',%d-D' % dim # TODO: this is strange when different dimensions are plotted plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) if len(dictFunc) == 1: plt.title(' '.join((str(dictFunc.keys()[0]), genericsettings.current_testbed.short_names[dictFunc.keys()[0]]))) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit**annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append('%d' % round(np.log10(i))) a.set_xticklabels(tmp) if save_figure: ppfig.saveFigure(figureName, verbose=verbose) if len(dictFunc) == 1: ppfig.save_single_functions_html( os.path.join(outputdir, 'pprldmany'), '', # algorithms names are clearly visible in the figure add_to_names='_%02dD' %(dim), algorithmCount=ppfig.AlgorithmCount.NON_SPECIFIED ) if close_figure: plt.close()
def main(dictAlg, sortedAlgs, outputdir='.', verbose=True, function_targets_line=True): # [1, 13, 101] """Generate one table per func with results of multiple algorithms.""" """Difference with the first version: * numbers aligned using the decimal separator * premices for dispersion measure * significance test against best algorithm * table width... Takes ``targetsOfInterest`` from this file as "input argument" to compute the desired target values. ``targetsOfInterest`` might be configured via config. """ # TODO: method is long, terrible to read, split if possible if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() # Sort data per dimension and function dictData = {} dsListperAlg = list(dictAlg[i] for i in sortedAlgs) for n, entries in enumerate(dsListperAlg): tmpdictdim = entries.dictByDim() for d in tmpdictdim: tmpdictfun = tmpdictdim[d].dictByFunc() for f in tmpdictfun: dictData.setdefault((d, f), {})[n] = tmpdictfun[f] nbtests = len(dictData) for df in dictData: # Generate one table per df # first update targets for each dimension-function pair if needed: targets = targetsOfInterest((df[1], df[0])) targetf = targets[-1] # best 2009 refalgentry = bestalg.bestalgentries2009[df] refalgert = refalgentry.detERT(targets) refalgevals = (refalgentry.detEvals((targetf, ))[0][0]) refalgnbruns = len(refalgevals) refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False) # Process the data # The following variables will be lists of elements each corresponding # to an algorithm algnames = [] #algdata = [] algerts = [] algevals = [] algdisp = [] algnbsucc = [] algnbruns = [] algmedmaxevals = [] algmedfinalfunvals = [] algtestres = [] algentries = [] for n in sorted(dictData[df].keys()): entries = dictData[df][n] # the number of datasets for a given dimension and function (df) # should be strictly 1. TODO: find a way to warn # TODO: do this checking before... why wasn't it triggered by ppperprof? if len(entries) > 1: txt = ("There is more than a single entry associated with " "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1])) raise Exception(txt) entry = entries[0] algentries.append(entry) algnames.append(sortedAlgs[n]) evals = entry.detEvals(targets) #tmpdata = [] tmpdisp = [] tmpert = [] for i, e in enumerate(evals): succ = (numpy.isnan(e) == False) ec = e.copy() # note: here was the previous bug (changes made in e also appeared in evals !) ec[succ == False] = entry.maxevals[succ == False] ert = toolsstats.sp(ec, issuccessful=succ)[0] #tmpdata.append(ert/refalgert[i]) if succ.any(): tmp = toolsstats.drawSP(ec[succ], entry.maxevals[succ == False], [10, 50, 90], samplesize=samplesize)[0] tmpdisp.append((tmp[-1] - tmp[0])/2.) else: tmpdisp.append(numpy.nan) tmpert.append(ert) algerts.append(tmpert) algevals.append(evals) #algdata.append(tmpdata) algdisp.append(tmpdisp) algmedmaxevals.append(numpy.median(entry.maxevals)) algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0]) #algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) algtestres.append(significancetest(refalgentry, entry, targets)) # determine success probability for Df = 1e-8 e = entry.detEvals((targetf ,))[0] algnbsucc.append(numpy.sum(numpy.isnan(e) == False)) algnbruns.append(len(e)) # Process over all data # find best values... nalgs = len(dictData[df]) maxRank = 1 + numpy.floor(0.14 * nalgs) # number of algs to be displayed in bold isBoldArray = [] # Point out the best values algfinaldata = [] # Store median function values/median number of function evaluations tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank) for i, erts in enumerate(algerts): tmp = [] for j, ert in enumerate(erts): # algi targetj tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j])) isBoldArray.append(tmp) algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i])) # significance test of best given algorithm against all others best_alg_idx = numpy.array(algerts).argsort(0)[0, :] # indexed by target index significance_versus_others = significance_all_best_vs_other(algentries, targets, best_alg_idx)[0] # Create the table table = [] spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ } spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ } extraeol = [] # Generate header lines if with_table_heading: header = funInfos[df[1]] if funInfos else 'f%d' % df[1] table.append([r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' % (2 * len(targets) + 2, header)]) extraeol.append('') if function_targets_line is True or (function_targets_line and df[1] in function_targets_line): if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): curline = [r'\#FEs/D'] for i in targetsOfInterest.labels(): curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i) else: curline = [r'$\Delta f_\mathrm{opt}$'] for t in targets: curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvals2(t, precision=1, isscientific=True)) # curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}' # % writeFEvals2(targets[-1], precision=1, isscientific=True)) curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') table.append(curline) extraeol.append(r'\hline') # extraeol.append(r'\hline\arrayrulecolor{tableShade}') curline = [r'ERT$_{\text{best}}$'] if with_table_heading else [r'\textbf{f%d}' % df[1]] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals for i in xrange(len(refalgert[:-1])): temp="%.1e" %targetsOfInterest((df[1], df[0]))[i] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp,writeFEvalsMaxPrec(refalgert[i], 2))) temp="%.1e" %targetsOfInterest((df[1], df[0]))[-1] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp,writeFEvalsMaxPrec(refalgert[-1], 2))) else: # write #fevals of the reference alg for i in refalgert[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(refalgert[-1], 2)) # write the success ratio for the reference alg tmp2 = numpy.sum(numpy.isnan(refalgevals) == False) # count the nb of success curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(refalgevals)) table.append(curline[:]) extraeol.append('') #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))): #print i, gna, gno #set_trace() # Format data #if df == (5, 17): #set_trace() header = r'\providecommand{\ntables}{7}' for i, alg in enumerate(algnames): #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames, #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres): commandname = r'\alg%stables' % numtotext(i) # header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg))) header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % (commandname, str_to_latex(strip_pathname2(alg))) curline = [commandname + r'\hspace*{\fill}'] # each list element becomes a &-separated table entry? for j, tmp in enumerate(zip(algerts[i], algdisp[i], # j is target index isBoldArray[i], algtestres[i])): ert, dispersion, isBold, testres = tmp alignment = '@{\,}X@{\,}' if j == len(algerts[i]) - 1: alignment = '@{\,}X@{\,}|' data = ert/refalgert[j] # write star for significance against all other algorithms str_significance_subsup = '' if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05): logp = -numpy.ceil(numpy.log10(nbtests * significance_versus_others[j][1])) str_significance_subsup = r"^{%s%s}" % (significance_vs_others_symbol, str(int(logp)) if logp > 1 else '') # moved out of the above else: this was a bug!? z, p = testres if (nbtests * p) < 0.05 and data < 1. and z < 0.: if not numpy.isinf(refalgert[j]): tmpevals = algevals[i][j].copy() tmpevals[numpy.isnan(tmpevals)] = algentries[i].maxevals[numpy.isnan(tmpevals)] bestevals = refalgentry.detEvals(targets) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan(bestevals)] = refalgentry.maxevals[bestalgalg][numpy.isnan(bestevals)] tmpevals = numpy.array(sorted(tmpevals))[0:min(len(tmpevals), len(bestevals))] bestevals = numpy.array(sorted(bestevals))[0:min(len(tmpevals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) # tmp2[-1] += r'$^{%s}$' % superscript str_significance_subsup += r'_{%s%s}' % (significance_vs_ref_symbol, str(int(nbstars)) if nbstars > 1 else '') if str_significance_subsup: str_significance_subsup = '$%s$' % str_significance_subsup # format number in variable data if numpy.isnan(data): curline.append(r'\multicolumn{2}{%s}{.}' % alignment) else: if numpy.isinf(refalgert[j]): curline.append(r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}' % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup)) continue tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation if numpy.isinf(data) and j == len(algerts[i]) - 1: tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec(algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) else: tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data) if isBold: tmp = r'\textbf{%s}' % tmp if not numpy.isnan(dispersion): tmpdisp = dispersion/refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp += r'\mbox{\tiny (%s)}' % tmpdisp curline.append(r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup)) else: tmp2 = tmp.split('.', 1) if len(tmp2) < 2: tmp2.append('') else: tmp2[-1] = '.' + tmp2[-1] if isBold: tmp3 = [] for k in tmp2: tmp3.append(r'\textbf{%s}' % k) tmp2 = tmp3 if not numpy.isnan(dispersion): tmpdisp = dispersion/refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.01: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp)) tmp2[-1] += str_significance_subsup curline.extend(tmp2) curline.append('%d' % algnbsucc[i]) curline.append('/%d' % algnbruns[i]) table.append(curline) extraeol.append('') # Write table res = tableXLaTeX(table, spec=spec, extraeol=extraeol) try: filename = os.path.join(outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0])) f = open(filename, 'w') f.write(header + '\n') f.write(res) if verbose: print 'Wrote table in %s' % filename except: raise else: f.close()
def main(dictAlg, order=None, outputdir='.', info='default', verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config if 'x_limit' not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1: raise Exception('We never integrate over dimension.') dim = tmp.keys()[0] algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0. if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL': tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == 'noiselessall': CrE = 0.5117 elif tmp.keys()[0] == 'nzall': CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print 'Crafting effort for', alg, 'is', CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][0] # one element per fun and per dim. evals = entry.detEvals([t])[0] runlengthsucc = evals[np.isnan(evals) == False] / entry.dim runlengthunsucc = entry.maxevals[np.isnan(evals)] / entry.dim if len(runlengthsucc) > 0: x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] except (KeyError, IndexError): #set_trace() warntxt = ('Data for algorithm %s on function %d in %d-D ' % (alg, f, dim) + 'are missing.\n') warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) if displaybest2009: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgentry = bestalg.bestalgentries2009[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] #set_trace() runlengthsucc = evals[np.isnan(evals) == False] / bestalgentry.dim runlengthunsucc = bestalgentry.maxevals[bestalgevals[1][j]][np.isnan(evals)] / bestalgentry.dim x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = {'ls': '-', 'linewidth': 6, 'marker': 'D', 'markersize': 11., 'markeredgewidth': 1.5, 'markerfacecolor': refcolor, 'markeredgecolor': refcolor, 'color': refcolor, 'label': 'best 2009', 'zorder': -1} lines.append(plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE = 0., **args)) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args['linewidth'] = 1.5 args['markersize'] = 12. args['markeredgewidth'] = 1.5 args['markerfacecolor'] = 'None' args['markeredgecolor'] = args['color'] args['label'] = alg #args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib #elif len(show_algorithms) > 0: #args['color'] = 'wheat' #args['ls'] = '-' #args['zorder'] = -1 lines.append(plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: #isLateXLeg: fileName = os.path.join(outputdir,'pprldmany_%s.tex' % (info)) try: f = open(fileName, 'w') f.write(r'\providecommand{\nperfprof}{7}') algtocommand = {} for i, alg in enumerate(order): tmp = r'\alg%sperfprof' % pptex.numtotext(i) f.write(r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' % (tmp, toolsdivers.str_to_latex(toolsdivers.strip_pathname2(alg)))) algtocommand[alg] = tmp commandnames = [] if displaybest2009: tmp = r'\algzeroperfprof' f.write(r'\providecommand{%s}{best 2009}' % (tmp)) algtocommand['best 2009'] = tmp for l in labels: commandnames.append(algtocommand[l]) # f.write(headleg) f.write(r'\providecommand{\perfprofsidepanel}{\mbox{%s}' % commandnames[0]) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write('\n' + r'\vfill \mbox{%s}' % commandnames[i]) f.write('}\n') # f.write(footleg) if verbose: print 'Wrote right-hand legend in %s' % fileName except: raise # TODO: Does this make sense? else: f.close() figureName = os.path.join(outputdir,'pprldmany_%s' % (info)) #beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = 'f%s' % (ppfig.consecutiveNumbers(sorted(dictFunc.keys()))) text += ',%d-D' % dim plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit**annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append('%d' % round(np.log10(i))) a.set_xticklabels(tmp) ppfig.saveFigure(figureName, verbose=verbose) plt.close()
def main(dictAlg, sortedAlgs, outputdir='.', verbose=True, function_targets_line=True): # [1, 13, 101] """Generate one table per func with results of multiple algorithms.""" """Difference with the first version: * numbers aligned using the decimal separator * premices for dispersion measure * significance test against best algorithm * table width... Takes ``targetsOfInterest`` from this file as "input argument" to compute the desired target values. ``targetsOfInterest`` might be configured via config. """ # TODO: method is long, terrible to read, split if possible if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() # Sort data per dimension and function dictData = {} dsListperAlg = list(dictAlg[i] for i in sortedAlgs) for n, entries in enumerate(dsListperAlg): tmpdictdim = entries.dictByDim() for d in tmpdictdim: tmpdictfun = tmpdictdim[d].dictByFunc() for f in tmpdictfun: dictData.setdefault((d, f), {})[n] = tmpdictfun[f] nbtests = len(dictData) for df in dictData: # Generate one table per df # first update targets for each dimension-function pair if needed: targets = targetsOfInterest((df[1], df[0])) targetf = targets[-1] # best 2009 refalgentry = bestalg.bestalgentries2009[df] refalgert = refalgentry.detERT(targets) refalgevals = (refalgentry.detEvals((targetf, ))[0][0]) refalgnbruns = len(refalgevals) refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False) # Process the data # The following variables will be lists of elements each corresponding # to an algorithm algnames = [] #algdata = [] algerts = [] algevals = [] algdisp = [] algnbsucc = [] algnbruns = [] algmedmaxevals = [] algmedfinalfunvals = [] algtestres = [] algentries = [] for n in sorted(dictData[df].keys()): entries = dictData[df][n] # the number of datasets for a given dimension and function (df) # should be strictly 1. TODO: find a way to warn # TODO: do this checking before... why wasn't it triggered by ppperprof? if len(entries) > 1: txt = ("There is more than a single entry associated with " "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1])) raise Exception(txt) entry = entries[0] algentries.append(entry) algnames.append(sortedAlgs[n]) evals = entry.detEvals(targets) #tmpdata = [] tmpdisp = [] tmpert = [] for i, e in enumerate(evals): succ = (numpy.isnan(e) == False) ec = e.copy( ) # note: here was the previous bug (changes made in e also appeared in evals !) ec[succ == False] = entry.maxevals[succ == False] ert = toolsstats.sp(ec, issuccessful=succ)[0] #tmpdata.append(ert/refalgert[i]) if succ.any(): tmp = toolsstats.drawSP(ec[succ], entry.maxevals[succ == False], [10, 50, 90], samplesize=samplesize)[0] tmpdisp.append((tmp[-1] - tmp[0]) / 2.) else: tmpdisp.append(numpy.nan) tmpert.append(ert) algerts.append(tmpert) algevals.append(evals) #algdata.append(tmpdata) algdisp.append(tmpdisp) algmedmaxevals.append(numpy.median(entry.maxevals)) algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0]) #algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) algtestres.append(significancetest(refalgentry, entry, targets)) # determine success probability for Df = 1e-8 e = entry.detEvals((targetf, ))[0] algnbsucc.append(numpy.sum(numpy.isnan(e) == False)) algnbruns.append(len(e)) # Process over all data # find best values... nalgs = len(dictData[df]) maxRank = 1 + numpy.floor( 0.14 * nalgs) # number of algs to be displayed in bold isBoldArray = [] # Point out the best values algfinaldata = [ ] # Store median function values/median number of function evaluations tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank) for i, erts in enumerate(algerts): tmp = [] for j, ert in enumerate(erts): # algi targetj tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j])) isBoldArray.append(tmp) algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i])) # significance test of best given algorithm against all others best_alg_idx = numpy.array(algerts).argsort(0)[ 0, :] # indexed by target index significance_versus_others = significance_all_best_vs_other( algentries, targets, best_alg_idx)[0] # Create the table table = [] spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } extraeol = [] # Generate header lines if with_table_heading: header = funInfos[df[1]] if funInfos else 'f%d' % df[1] table.append([ r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' % (2 * len(targets) + 2, header) ]) extraeol.append('') if function_targets_line is True or (function_targets_line and df[1] in function_targets_line): if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): curline = [r'\#FEs/D'] for i in targetsOfInterest.labels(): curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i) else: curline = [r'$\Delta f_\mathrm{opt}$'] for t in targets: curline.append( r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvals2(t, precision=1, isscientific=True)) # curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}' # % writeFEvals2(targets[-1], precision=1, isscientific=True)) curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') table.append(curline) extraeol.append(r'\hline') # extraeol.append(r'\hline\arrayrulecolor{tableShade}') curline = [r'ERT$_{\text{best}}$' ] if with_table_heading else [r'\textbf{f%d}' % df[1]] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals for i in xrange(len(refalgert[:-1])): temp = "%.1e" % targetsOfInterest((df[1], df[0]))[i] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append( r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp, writeFEvalsMaxPrec(refalgert[i], 2))) temp = "%.1e" % targetsOfInterest((df[1], df[0]))[-1] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp, writeFEvalsMaxPrec(refalgert[-1], 2))) else: # write #fevals of the reference alg for i in refalgert[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(refalgert[-1], 2)) # write the success ratio for the reference alg tmp2 = numpy.sum( numpy.isnan(refalgevals) == False) # count the nb of success curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(refalgevals)) table.append(curline[:]) extraeol.append('') #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))): #print i, gna, gno #set_trace() # Format data #if df == (5, 17): #set_trace() header = r'\providecommand{\ntables}{7}' for i, alg in enumerate(algnames): #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames, #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres): commandname = r'\alg%stables' % numtotext(i) # header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg))) header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % ( commandname, str_to_latex(strip_pathname2(alg))) curline = [ commandname + r'\hspace*{\fill}' ] # each list element becomes a &-separated table entry? for j, tmp in enumerate( zip( algerts[i], algdisp[i], # j is target index isBoldArray[i], algtestres[i])): ert, dispersion, isBold, testres = tmp alignment = '@{\,}X@{\,}' if j == len(algerts[i]) - 1: alignment = '@{\,}X@{\,}|' data = ert / refalgert[j] # write star for significance against all other algorithms str_significance_subsup = '' if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05): logp = -numpy.ceil( numpy.log10( nbtests * significance_versus_others[j][1])) str_significance_subsup = r"^{%s%s}" % ( significance_vs_others_symbol, str(int(logp)) if logp > 1 else '') # moved out of the above else: this was a bug!? z, p = testres if (nbtests * p) < 0.05 and data < 1. and z < 0.: if not numpy.isinf(refalgert[j]): tmpevals = algevals[i][j].copy() tmpevals[numpy.isnan(tmpevals)] = algentries[ i].maxevals[numpy.isnan(tmpevals)] bestevals = refalgentry.detEvals(targets) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan( bestevals)] = refalgentry.maxevals[bestalgalg][ numpy.isnan(bestevals)] tmpevals = numpy.array(sorted( tmpevals))[0:min(len(tmpevals), len(bestevals))] bestevals = numpy.array(sorted( bestevals))[0:min(len(tmpevals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) # tmp2[-1] += r'$^{%s}$' % superscript str_significance_subsup += r'_{%s%s}' % ( significance_vs_ref_symbol, str(int(nbstars)) if nbstars > 1 else '') if str_significance_subsup: str_significance_subsup = '$%s$' % str_significance_subsup # format number in variable data if numpy.isnan(data): curline.append(r'\multicolumn{2}{%s}{.}' % alignment) else: if numpy.isinf(refalgert[j]): curline.append( r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}' % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup)) continue tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation if numpy.isinf(data) and j == len(algerts[i]) - 1: tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec( algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) else: tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data) if isBold: tmp = r'\textbf{%s}' % tmp if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp += r'\mbox{\tiny (%s)}' % tmpdisp curline.append( r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup)) else: tmp2 = tmp.split('.', 1) if len(tmp2) < 2: tmp2.append('') else: tmp2[-1] = '.' + tmp2[-1] if isBold: tmp3 = [] for k in tmp2: tmp3.append(r'\textbf{%s}' % k) tmp2 = tmp3 if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.01: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp)) tmp2[-1] += str_significance_subsup curline.extend(tmp2) curline.append('%d' % algnbsucc[i]) curline.append('/%d' % algnbruns[i]) table.append(curline) extraeol.append('') # Write table res = tableXLaTeX(table, spec=spec, extraeol=extraeol) try: filename = os.path.join( outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0])) f = open(filename, 'w') f.write(header + '\n') f.write(res) if verbose: print 'Wrote table in %s' % filename except: raise else: f.close()