def _get_star_dirnames(align_dir, data, names): ALIGNED_OUT_FILE = "Aligned.out.sam" out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_file = out_prefix + ALIGNED_OUT_FILE out_dir = os.path.join(align_dir, "%s_star" % dd.get_lane(data)) final_out = os.path.join(out_dir, "{0}.bam".format(names["sample"])) return StarOutDirs(out_dir, out_file, out_prefix, final_out)
def align(fastq_file, pair_file, ref_file, names, align_dir, data): assert data["analysis"].lower().startswith("wgbs-seq"), "No comparible alignment." config = data["config"] sample = dd.get_sample_name(data) out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_dir = os.path.join(align_dir, "%s_bismark" % dd.get_lane(data)) if not ref_file: logger.error("bismark index not found. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners bismark --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(align_dir, "{0}.bam".format(sample)) if file_exists(final_out): data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] data = dd.update_summary_qc(data, "bismark", base=data["bam_report"]) return data bismark = config_utils.get_program("bismark", config) # bismark uses 5 threads/sample and ~12GB RAM/sample (hg38) resources = config_utils.get_resources("bismark", data["config"]) max_cores = dd.get_num_cores(data) max_mem = config_utils.convert_to_bytes(resources.get("memory", "1G")) / (1024.0 * 1024.0) instances = calculate_bismark_instances(max_cores, max_mem * max_cores) # override instances if specified in the config if resources and resources.get("bismark_threads"): instances = resources.get("bismark_threads") logger.info(f"Using {instances} bismark instances - overriden by resources") bowtie_threads = 1 if resources and resources.get("bowtie_threads"): bowtie_threads = resources.get("bowtie_threads") logger.info(f"Using {bowtie_threads} bowtie threads per bismark instance") kit = kits.KITS.get(dd.get_kit(data), None) directional = "--non_directional" if kit and not kit.is_directional else "" other_opts = resources.get("options", []) other_opts = " ".join([str(x) for x in other_opts]).strip() fastq_files = " ".join([fastq_file, pair_file]) if pair_file else fastq_file safe_makedir(align_dir) cmd = "{bismark} {other_opts} {directional} --bowtie2 --temp_dir {tx_out_dir} --gzip --parallel {instances} -p {bowtie_threads} -o {tx_out_dir} --unmapped {ref_file} {fastq_file} " if pair_file: fastq_file = "-1 %s -2 %s" % (fastq_file, pair_file) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") if not raw_bam: with tx_tmpdir() as tx_out_dir: run_message = "Running Bismark aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) shutil.move(tx_out_dir, out_dir) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") # don't process bam in the bismark pipeline! utils.symlink_plus(raw_bam[0], final_out) data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] data = dd.update_summary_qc(data, "bismark", base=data["bam_report"]) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): max_hits = 10 srna = True if data["analysis"].lower().startswith("smallrna-seq") else False srna_opts = "" if srna: max_hits = 1000 srna_opts = "--alignIntronMax 1" config = data["config"] out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_file = out_prefix + "Aligned.out.sam" out_dir = os.path.join(align_dir, "%s_star" % dd.get_lane(data)) if not ref_file: logger.error("STAR index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners star --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(out_dir, "{0}.bam".format(names["sample"])) if file_exists(final_out): data = _update_data(final_out, out_dir, names, data) return data star_path = config_utils.get_program("STAR", config) fastq_files = " ".join([fastq_file, pair_file]) if pair_file else fastq_file num_cores = dd.get_num_cores(data) gtf_file = dd.get_gtf_file(data) safe_makedir(align_dir) cmd = ("{star_path} --genomeDir {ref_file} --readFilesIn {fastq_files} " "--runThreadN {num_cores} --outFileNamePrefix {out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax {max_hits} " "--outStd SAM {srna_opts} " "--outSAMunmapped Within --outSAMattributes %s " % " ".join(ALIGN_TAGS)) cmd += _add_sj_index_commands(fastq_file, ref_file, gtf_file) if not srna else "" cmd += " --readFilesCommand zcat " if is_gzipped(fastq_file) else "" cmd += _read_group_option(names) fusion_mode = utils.get_in(data, ("config", "algorithm", "fusion_mode"), False) if fusion_mode: cmd += (" --chimSegmentMin 12 --chimJunctionOverhangMin 12 " "--chimScoreDropMax 30 --chimSegmentReadGapMax 5 " "--chimScoreSeparation 5 " "--chimOutType WithinSAM ") strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded" and not srna: cmd += " --outSAMstrandField intronMotif " if not srna: cmd += " --quantMode TranscriptomeSAM " with file_transaction(data, final_out) as tx_final_out: cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_final_out) run_message = "Running STAR aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) data = _update_data(final_out, out_dir, names, data) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): assert data["analysis"].lower().startswith( "wgbs-seq"), "No comparible alignment." config = data["config"] sample = dd.get_sample_name(data) out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_dir = os.path.join(align_dir, "%s_bismark" % dd.get_lane(data)) if not ref_file: logger.error( "bismark index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners bismark --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(align_dir, "{0}.bam".format(sample)) if file_exists(final_out): data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] return data bismark = config_utils.get_program("bismark", config) # bismark uses 5 threads/sample and ~12GB RAM/sample (hg38) resources = config_utils.get_resources("bismark", data["config"]) max_cores = resources.get("cores", 1) max_mem = config_utils.convert_to_bytes(resources.get("memory", "1G")) n = min(max(int(max_cores / 5), 1), max(int(max_mem / config_utils.convert_to_bytes("12G")), 1)) kit = kits.KITS.get(dd.get_kit(data), None) directional = "--non_directional" if kit and not kit.is_directional else "" other_opts = resources.get("options", []) other_opts = " ".join([str(x) for x in other_opts]).strip() fastq_files = " ".join([fastq_file, pair_file ]) if pair_file else fastq_file safe_makedir(align_dir) cmd = "{bismark} {other_opts} {directional} --bowtie2 --temp_dir {tx_out_dir} --gzip --multicore {n} -o {tx_out_dir} --unmapped {ref_file} {fastq_file}" if pair_file: fastq_file = "-1 %s -2 %s" % (fastq_file, pair_file) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") if not raw_bam: with tx_tmpdir() as tx_out_dir: run_message = "Running Bismark aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) shutil.move(tx_out_dir, out_dir) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") process_bam = _process_bam(raw_bam[0], fastq_files, sample, dd.get_sam_ref(data), config) utils.symlink_plus(process_bam, final_out) data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): config = data["config"] out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_file = out_prefix + "Aligned.out.sam" out_dir = os.path.join(align_dir, "%s_star" % dd.get_lane(data)) if not ref_file: logger.error( "STAR index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners star --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(out_dir, "{0}.bam".format(names["sample"])) if file_exists(final_out): data = _update_data(final_out, out_dir, names, data) return data star_path = config_utils.get_program("STAR", config) fastq = " ".join([fastq_file, pair_file]) if pair_file else fastq_file num_cores = config["algorithm"].get("num_cores", 1) safe_makedir(align_dir) cmd = ("{star_path} --genomeDir {ref_file} --readFilesIn {fastq} " "--runThreadN {num_cores} --outFileNamePrefix {out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax 10 " "--outStd SAM " "--outSAMunmapped Within --outSAMattributes %s" % " ".join(ALIGN_TAGS)) cmd = cmd + " --readFilesCommand zcat " if is_gzipped(fastq_file) else cmd cmd += _read_group_option(names) fusion_mode = utils.get_in(data, ("config", "algorithm", "fusion_mode"), False) if fusion_mode: cmd += " --chimSegmentMin 15 --chimJunctionOverhangMin 15" strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded": cmd += " --outSAMstrandField intronMotif " if dd.get_rsem(data) and not is_transcriptome_broken(): cmd += " --quantMode TranscriptomeSAM " with tx_tmpdir(data) as tmp_dir: sam_to_bam = bam.sam_to_bam_stream_cmd(config) sort = bam.sort_cmd(config, tmp_dir) cmd += "| {sam_to_bam} | {sort} -o {tx_final_out} " run_message = "Running STAR aligner on %s and %s" % (fastq_file, ref_file) with file_transaction(data, final_out) as tx_final_out: do.run(cmd.format(**locals()), run_message, None) data = _update_data(final_out, out_dir, names, data) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): config = data["config"] out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_file = out_prefix + "Aligned.out.sam" out_dir = os.path.join(align_dir, "%s_star" % dd.get_lane(data)) if not ref_file: logger.error("STAR index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners star --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(out_dir, "{0}.bam".format(names["sample"])) if file_exists(final_out): data = _update_data(final_out, out_dir, names, data) return data star_path = config_utils.get_program("STAR", config) fastq = " ".join([fastq_file, pair_file]) if pair_file else fastq_file num_cores = config["algorithm"].get("num_cores", 1) safe_makedir(align_dir) cmd = ("{star_path} --genomeDir {ref_file} --readFilesIn {fastq} " "--runThreadN {num_cores} --outFileNamePrefix {out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax 10 " "--outStd SAM " "--outSAMunmapped Within --outSAMattributes %s" % " ".join(ALIGN_TAGS)) cmd = cmd + " --readFilesCommand zcat " if is_gzipped(fastq_file) else cmd cmd += _read_group_option(names) fusion_mode = utils.get_in(data, ("config", "algorithm", "fusion_mode"), False) if fusion_mode: cmd += " --chimSegmentMin 15 --chimJunctionOverhangMin 15" strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded": cmd += " --outSAMstrandField intronMotif " if dd.get_rsem(data) and not is_transcriptome_broken(): cmd += " --quantMode TranscriptomeSAM " with tx_tmpdir(data) as tmp_dir: sam_to_bam = bam.sam_to_bam_stream_cmd(config) sort = bam.sort_cmd(config, tmp_dir) cmd += "| {sam_to_bam} | {sort} -o {tx_final_out} " run_message = "Running STAR aligner on %s and %s" % (fastq_file, ref_file) with file_transaction(data, final_out) as tx_final_out: do.run(cmd.format(**locals()), run_message, None) data = _update_data(final_out, out_dir, names, data) return data
def __init__(self, data): self._db_location = self._get_ericscript_db(data) self._sample_name = dd.get_lane(data) self._work_dir = dd.get_work_dir(data) self._env = None self._output_dir = None self._sample_out_dir = None
def align(fastq_file, pair_file, ref_file, names, align_dir, data): assert data["analysis"].lower().startswith("wgbs-seq"), "No comparible alignment" config = data["config"] sample = dd.get_sample_name(data) out_prefix = os.path.join(align_dir, dd.get_lane(data)) ref_file = dd.get_sam_ref(data) final_out = os.path.join(align_dir, "{0}.bam".format(sample)) if file_exists(final_out): data = dd.set_work_bam(data, final_out) return data bsmap = config_utils.get_program("bsmap", config) fastq_files = " -a %s" % fastq_file num_cores = dd.get_num_cores(data) num_cores = "-p %d" % num_cores safe_makedir(align_dir) cmd = "{bsmap} {num_cores} -w 100 -v 0.07 -m 10 -x 300 -o {tx_out_bam} -d {ref_file} {fastq_files}" if pair_file: fastq_files = "-a %s -b %s" % (fastq_file, pair_file) if not final_out: with file_transaction(final_out) as tx_out_bam: run_message = "Running BSMAP aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) data = dd.set_work_bam(data, final_out) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): paired = True if pair_file else False hisat2 = config_utils.get_program("hisat2", data) num_cores = dd.get_num_cores(data) quality_flag = _get_quality_flag(data) stranded_flag = _get_stranded_flag(data, paired) rg_flags = _get_rg_flags(names) out_file = os.path.join(align_dir, dd.get_lane(data)) + ".bam" if file_exists(out_file): data = dd.set_work_bam(data, out_file) return data cmd = ( "{hisat2} -x {ref_file} -p {num_cores} {quality_flag} {stranded_flag} " "{rg_flags} ") if paired: cmd += "-1 {fastq_file} -2 {pair_file} " else: cmd += "-U {fastq_file} " if dd.get_analysis(data).lower() == "smallrna-seq": cmd += "-k 1000 " # if assembling transcripts, set flags that cufflinks/stringtie can use if dd.get_transcript_assembler(data): cmd += "--dta-cufflinks " if dd.get_analysis(data).lower() == "rna-seq": gtf_file = dd.get_gtf_file(data) splicesites = os.path.join(os.path.dirname(gtf_file), "ref-transcripts-splicesites.txt") cmd += "--known-splicesite-infile {splicesites} " message = "Aligning %s and %s with hisat2." % (fastq_file, pair_file) with file_transaction(out_file) as tx_out_file: cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_out_file) do.run(cmd.format(**locals()), message) data = dd.set_work_bam(data, out_file) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): paired = True if pair_file else False hisat2 = config_utils.get_program("hisat2", data) num_cores = dd.get_num_cores(data) quality_flag = _get_quality_flag(data) stranded_flag = _get_stranded_flag(data, paired) rg_flags = _get_rg_flags(names) out_file = os.path.join(align_dir, dd.get_lane(data)) + ".bam" if file_exists(out_file): data = dd.set_work_bam(data, out_file) return data cmd = ("{hisat2} -x {ref_file} -p {num_cores} {quality_flag} {stranded_flag} " "{rg_flags} ") if paired: cmd += "-1 {fastq_file} -2 {pair_file} " else: cmd += "-U {fastq_file} " if dd.get_analysis(data).lower() == "smallrna-seq": cmd += "-k 1000 " # if assembling transcripts, set flags that cufflinks can use if dd.get_assemble_transcripts(data): cmd += "--dta-cufflinks " if dd.get_analysis(data) == "rna-seq": splicesites = os.path.join(os.path.dirname(gtf_file), "ref-transcripts-splicesites.txt") cmd += "--known-splicesite-infile {splicesites} " message = "Aligning %s and %s with hisat2." %(fastq_file, pair_file) with file_transaction(out_file) as tx_out_file: cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_out_file) do.run(cmd.format(**locals()), message) data = dd.set_work_bam(data, out_file) return data
def test_get_star_dirnames(data, names): align_dir = "/path/to/align/dir" lane = dd.get_lane(data) result = _get_star_dirnames(align_dir, data, names) assert result.out_dir == "/path/to/align/dir/%s_star" % lane assert result.out_prefix == "/path/to/align/dir/%s" % lane assert result.out_file == "/path/to/align/dir/%sAligned.out.sam" % lane assert result.final_out == "/path/to/align/dir/%s_star/%s.bam" % (lane, names["sample"])
def align(fastq_file, pair_file, ref_file, names, align_dir, data): assert data["analysis"].lower().startswith( "wgbs-seq"), "No comparible alignment." config = data["config"] sample = dd.get_sample_name(data) out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_dir = os.path.join(align_dir, "%s_bismark" % dd.get_lane(data)) if not ref_file: logger.error( "bismark index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners bismark --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(align_dir, "{0}.bam".format(sample)) if file_exists(final_out): data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] return data bismark = config_utils.get_program("bismark", config) fastq_files = " ".join([fastq_file, pair_file ]) if pair_file else fastq_file num_cores = dd.get_num_cores(data) n = 1 if num_cores < 5 else 2 safe_makedir(align_dir) cmd = "{bismark} --bowtie2 --temp_dir {tx_out_dir} --gzip --multicore {n} -o {tx_out_dir} --unmapped {ref_file} {fastq_file}" if pair_file: fastq_file = "-1 %s -2 %s" % (fastq_file, pair_file) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") if not raw_bam: with tx_tmpdir() as tx_out_dir: run_message = "Running Bismark aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) shutil.move(tx_out_dir, out_dir) raw_bam = glob.glob(out_dir + "/*bismark*bt2*bam") process_bam = _process_bam(raw_bam[0], fastq_files, sample, dd.get_sam_ref(data), config) utils.symlink_plus(process_bam, final_out) data = dd.set_work_bam(data, final_out) data["bam_report"] = glob.glob(os.path.join(out_dir, "*report.txt"))[0] return data
def test_get_star_dirnames(data, names): align_dir = '/path/to/align/dir' lane = dd.get_lane(data) result = _get_star_dirnames(align_dir, data, names) assert result.out_dir == '/path/to/align/dir/%s_star' % lane assert result.out_prefix == '/path/to/align/dir/%s' % lane assert result.out_file == '/path/to/align/dir/%sAligned.out.sam' % lane assert result.final_out == '/path/to/align/dir/%s_star/%s.bam' % ( lane, names['sample'])
def test_get_star_dirnames(data, names): from bcbio.ngsalign.star import _get_star_dirnames align_dir = '/path/to/align/dir' lane = dd.get_lane(data) result = star._get_star_dirnames(align_dir, data, names) assert result.out_dir == '/path/to/align/dir/%s_star' % lane assert result.out_prefix == '/path/to/align/dir/%s' % lane assert result.out_file == '/path/to/align/dir/%sAligned.out.sam' % lane assert result.final_out == '/path/to/align/dir/%s_star/%s.bam' % ( lane, names['sample'])
def align(fastq_file, pair_file, ref_file, names, align_dir, data): if not ref_file: logger.error( "STAR index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners star --genomes genome-build-name --data") sys.exit(1) max_hits = 10 srna = True if data["analysis"].lower().startswith( "smallrna-seq") else False srna_opts = "" if srna: max_hits = 1000 srna_opts = "--alignIntronMax 1" config = data["config"] star_dirs = _get_star_dirnames(align_dir, data, names) if file_exists(star_dirs.final_out): data = _update_data(star_dirs.final_out, star_dirs.out_dir, names, data) out_log_file = os.path.join(align_dir, dd.get_lane(data) + "Log.final.out") data = dd.update_summary_qc(data, "star", base=out_log_file) return data star_path = config_utils.get_program("STAR", config) def _unpack_fastq(f): """Use process substitution instead of readFilesCommand for gzipped inputs. Prevents issues on shared filesystems that don't support FIFO: https://github.com/alexdobin/STAR/issues/143 """ if f and is_gzipped(f): return "<(gunzip -c %s)" % f else: return f fastq_files = (" ".join([ _unpack_fastq(fastq_file), _unpack_fastq(pair_file) ]) if pair_file else _unpack_fastq(fastq_file)) num_cores = dd.get_num_cores(data) gtf_file = dd.get_transcriptome_gtf(data) if not gtf_file: gtf_file = dd.get_gtf_file(data) if ref_file.endswith("chrLength"): ref_file = os.path.dirname(ref_file) if index_has_alts(ref_file): logger.error( "STAR is being run on an index with ALTs which STAR is not " "designed for. Please remake your STAR index or use an ALT-aware " "aligner like hisat2") sys.exit(1) with file_transaction(data, align_dir) as tx_align_dir: tx_1pass_dir = tx_align_dir + "1pass" tx_star_dirnames = _get_star_dirnames(tx_1pass_dir, data, names) tx_out_dir, tx_out_file, tx_out_prefix, tx_final_out = tx_star_dirnames safe_makedir(tx_1pass_dir) safe_makedir(tx_out_dir) cmd = ( "{star_path} --genomeDir {ref_file} --readFilesIn {fastq_files} " "--runThreadN {num_cores} --outFileNamePrefix {tx_out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax {max_hits} " "--outStd BAM_Unsorted {srna_opts} " "--limitOutSJcollapsed 2000000 " "--outSAMtype BAM Unsorted " "--outSAMmapqUnique 60 " "--outSAMunmapped Within --outSAMattributes %s " % " ".join(ALIGN_TAGS)) cmd += _add_sj_index_commands(fastq_file, ref_file, gtf_file) if not srna else "" cmd += _read_group_option(names) if dd.get_fusion_caller(data): if "arriba" in dd.get_fusion_caller(data): cmd += ( "--chimSegmentMin 10 --chimOutType WithinBAM " "--chimJunctionOverhangMin 10 --chimScoreMin 1 --chimScoreDropMax 30 " "--chimScoreJunctionNonGTAG 0 --chimScoreSeparation 1 " "--alignSJstitchMismatchNmax 5 -1 5 5 " "--chimSegmentReadGapMax 3 " "--peOverlapNbasesMin 10 " "--alignSplicedMateMapLminOverLmate 0.5 ") else: cmd += (" --chimSegmentMin 12 --chimJunctionOverhangMin 12 " "--chimScoreDropMax 30 --chimSegmentReadGapMax 5 " "--chimScoreSeparation 5 ") if "oncofuse" in dd.get_fusion_caller(data): cmd += "--chimOutType Junctions " else: cmd += "--chimOutType WithinBAM " strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded" and not srna: cmd += " --outSAMstrandField intronMotif " if not srna: cmd += " --quantMode TranscriptomeSAM " resources = config_utils.get_resources("star", data["config"]) if resources.get("options", []): cmd += " " + " ".join( [str(x) for x in resources.get("options", [])]) cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_final_out) cmd += " > {tx_final_out} " run_message = "Running 1st pass of STAR aligner on %s and %s" % ( fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) sjfile = get_splicejunction_file(tx_out_dir, data) sjflag = f"--sjdbFileChrStartEnd {sjfile}" if sjfile else "" tx_star_dirnames = _get_star_dirnames(tx_align_dir, data, names) tx_out_dir, tx_out_file, tx_out_prefix, tx_final_out = tx_star_dirnames safe_makedir(tx_align_dir) safe_makedir(tx_out_dir) cmd = ( "{star_path} --genomeDir {ref_file} --readFilesIn {fastq_files} " "--runThreadN {num_cores} --outFileNamePrefix {tx_out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax {max_hits} " "--outStd BAM_Unsorted {srna_opts} " "--limitOutSJcollapsed 2000000 " "{sjflag} " "--outSAMtype BAM Unsorted " "--outSAMmapqUnique 60 " "--outSAMunmapped Within --outSAMattributes %s " % " ".join(ALIGN_TAGS)) cmd += _add_sj_index_commands(fastq_file, ref_file, gtf_file) if not srna else "" cmd += _read_group_option(names) if dd.get_fusion_caller(data): if "arriba" in dd.get_fusion_caller(data): cmd += ( "--chimSegmentMin 10 --chimOutType WithinBAM SoftClip Junctions " "--chimJunctionOverhangMin 10 --chimScoreMin 1 --chimScoreDropMax 30 " "--chimScoreJunctionNonGTAG 0 --chimScoreSeparation 1 " "--alignSJstitchMismatchNmax 5 -1 5 5 " "--chimSegmentReadGapMax 3 ") else: cmd += (" --chimSegmentMin 12 --chimJunctionOverhangMin 12 " "--chimScoreDropMax 30 --chimSegmentReadGapMax 5 " "--chimScoreSeparation 5 ") if "oncofuse" in dd.get_fusion_caller(data): cmd += "--chimOutType Junctions " else: cmd += "--chimOutType WithinBAM " strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded" and not srna: cmd += " --outSAMstrandField intronMotif " if not srna: cmd += " --quantMode TranscriptomeSAM " resources = config_utils.get_resources("star", data["config"]) if resources.get("options", []): cmd += " " + " ".join( [str(x) for x in resources.get("options", [])]) cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_final_out) cmd += " > {tx_final_out} " run_message = "Running 2nd pass of STAR aligner on %s and %s" % ( fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) data = _update_data(star_dirs.final_out, star_dirs.out_dir, names, data) out_log_file = os.path.join(align_dir, dd.get_lane(data) + "Log.final.out") data = dd.update_summary_qc(data, "star", base=out_log_file) return data
def align(fastq_file, pair_file, ref_file, names, align_dir, data): max_hits = 10 srna = True if data["analysis"].lower().startswith( "smallrna-seq") else False srna_opts = "" if srna: max_hits = 1000 srna_opts = "--alignIntronMax 1" config = data["config"] out_prefix = os.path.join(align_dir, dd.get_lane(data)) out_file = out_prefix + "Aligned.out.sam" out_dir = os.path.join(align_dir, "%s_star" % dd.get_lane(data)) if not ref_file: logger.error( "STAR index not found. We don't provide the STAR indexes " "by default because they are very large. You can install " "the index for your genome with: bcbio_nextgen.py upgrade " "--aligners star --genomes genome-build-name --data") sys.exit(1) final_out = os.path.join(out_dir, "{0}.bam".format(names["sample"])) if file_exists(final_out): data = _update_data(final_out, out_dir, names, data) return data star_path = config_utils.get_program("STAR", config) fastq_files = " ".join([fastq_file, pair_file ]) if pair_file else fastq_file num_cores = dd.get_num_cores(data) gtf_file = dd.get_gtf_file(data) safe_makedir(align_dir) cmd = ("{star_path} --genomeDir {ref_file} --readFilesIn {fastq_files} " "--runThreadN {num_cores} --outFileNamePrefix {out_prefix} " "--outReadsUnmapped Fastx --outFilterMultimapNmax {max_hits} " "--outStd SAM {srna_opts} " "--outSAMunmapped Within --outSAMattributes %s " % " ".join(ALIGN_TAGS)) cmd += _add_sj_index_commands(fastq_file, ref_file, gtf_file) if not srna else "" cmd += " --readFilesCommand zcat " if is_gzipped(fastq_file) else "" cmd += _read_group_option(names) fusion_mode = utils.get_in(data, ("config", "algorithm", "fusion_mode"), False) if fusion_mode: cmd += (" --chimSegmentMin 12 --chimJunctionOverhangMin 12 " "--chimScoreDropMax 30 --chimSegmentReadGapMax 5 " "--chimScoreSeparation 5 " "--chimOutType WithinSAM ") strandedness = utils.get_in(data, ("config", "algorithm", "strandedness"), "unstranded").lower() if strandedness == "unstranded" and not srna: cmd += " --outSAMstrandField intronMotif " if not srna: cmd += " --quantMode TranscriptomeSAM " with file_transaction(data, final_out) as tx_final_out: cmd += " | " + postalign.sam_to_sortbam_cl(data, tx_final_out) run_message = "Running STAR aligner on %s and %s" % (fastq_file, ref_file) do.run(cmd.format(**locals()), run_message, None) data = _update_data(final_out, out_dir, names, data) return data