# tree.dotPrint2("subtree" + str(cnt)) # cnt += 1 #bdd.transformToLUT([2,1],resultTree) #--------create LUT structure ------------------------------------ # create ld(my) for every level (actually it is not ld(my), because every ld(my)=0 becomes ld(my)=1) print "\n... calculating 'my' for each level" setOfLdMy = [] for levels in range(1,inputs): ldmy = int(math.ceil(math.log(bdd.getMy(resultTree,levels+1),2))) # ldmy get modify if ldmy=0 -> necessary for doNaiveDecomp function if(ldmy == 0): ldmy = 1 setOfLdMy.append(ldmy) # naive or smart decomposition? if(decNaive == True): print "\n... creating LUT structure" # here comes the actual decomposition algorithm which returns just an array of arrays/integers and a array of integers with the cut position within the tree lutstruc, cutHeights = resultTree.doNaiveDecomp(k, weight_dic_int, setOfLdMy) print "\nChosen %s-LUT structure:" %k print lutstruc
def mainProcedure(inputfile, k, actSifting, plotGraph): f = open(inputfile, "r") content = f.readlines() f.close() print inputfile # ------- splitting header / boundset / freeset --------------------- content2 = [] equations = [] for line in content: content2.append(line.split(" ")) for line in content2: if line[0] == ".i": inputs = int(line[1][:-1]) if line[0] == ".o": outputs = int(line[1][:-1]) if line[0][0] != "." and len(line) >= 2: equations.append([line[0], line[1][:-1]]) # ------- create minterms from blif equations --------------------- outputs = 1 # comment if all outputs shall computed !!!!! maxtermArray = [] variableOrderArray = [] for i in range(outputs): maxtermArray.append(bf.Maxterm(i)) # i is index, increment for each output for output in range(outputs): # for each output equations_ONset = [] # only ON set equations equations_NumberOfCares = [] # gives a number for each line, which indicates how many 0s or 1s are included for line in equations: if line[1][output] == "1": # select the line with an 1 at the end to create the minterm equations_ONset.append(line[0]) tempCareCounter = 0 for position in range(inputs): if line[0][position] == "0" or line[0][position] == "1": tempCareCounter += 1 equations_NumberOfCares.append(float(tempCareCounter)) # ------- sort inputs depending on variable weights ---------------- weight_dic = {} # dictionary in the form of {'x1': 0.7337, 'x2': 0.1234, ... } numberOfLines = float(len(equations_ONset)) # all values to zero for i in range(inputs): weight_dic["x" + str(i + 1)] = 0 # update weigth for each variable for i in range(inputs): for index, line in enumerate(equations_ONset): if line[i] == "0" or line[i] == "1": weight_dic["x" + str(i + 1)] += 1.0 / equations_NumberOfCares[index] * 1.0 / numberOfLines # sort weight_dic weight_dic = sorted( weight_dic.items(), key=itemgetter(1) ) # notice that dictionary becomes a list of tuples now # weight list becomes a list of variable indeces in sorted order [9, 3, ...] weight_dic_int = [] for var in weight_dic: weight_dic_int.append(int(var[0][1:])) # lowest value at the beginning -> must be reversed weight_dic_int.reverse() # add the initial order to an array variableOrderArray.append(weight_dic_int) # finally build the maxterm for line in equations_ONset: maxtermArray[output].addMinterm(bf.buildMinterm(line)) # -------- building tree ----------------------------------------- print "\n... creating tree", resultTree = bdd.doShannon(maxtermArray[0], 1, inputs, weight_dic_int) # must be done for every output !!!! print "\n\n... creating QRBDD" resultTree.makeQRBDD() print "\n... updating level" bdd.updateLevel(resultTree) if actSifting == 1: print "\n\n... sifting tree" bdd.doSifting(resultTree) # update the variable order after sifting: weight_dic_int = bdd.getVariableOrder(resultTree, []) print "\nNumber of Nodes:", bdd.countNodes(resultTree) # --------create LUT structure ------------------------------------ # create ld(my) for every level (actually it is not ld(my), because every ld(my)=0 becomes ld(my)=1) print "\n... calculating 'my' for each level" setOfLdMy = [] for levels in range(1, inputs): ldmy = int(math.ceil(math.log(bdd.getMy(resultTree, levels + 1), 2))) # ldmy get modify if ldmy=0 -> necessary for doNaiveDecomp function if ldmy == 0: ldmy = 1 setOfLdMy.append(ldmy) # naive or smart decomposition? print "\n... creating LUT structure" # here comes the actual decomposition algorithm which returns just an array of arrays/integers and a array of integers with the cut position within the tree lutstruc, cutHeights = resultTree.doNaiveDecomp(k, weight_dic_int, setOfLdMy) print "\nCut positions:" print cutHeights ultimativeArray = bdd.encodeCutNodes(resultTree, cutHeights) outputCore = bdd.getBLIF(ultimativeArray, resultTree) # ------write BLIF file ------------------------------------------ print "\n... creating BLIF file" outputName = f.name.split("/")[-1].split(".")[0] + "_%s_feasible" % k outputContent = ".model " + outputName + "\n.inputs" for inVar in range(1, inputs + 1): outputContent += " x%s" % inVar outputContent += "\n.outputs y\n\n" + outputCore print "\n########## BLIF #########\n\n" + outputContent print "#########################" outputFile = open(outputName + ".blif", "w") outputFile.write(outputContent) outputFile.close() # ------- PLOT -------------------------------------------------- if plotGraph == 1: print "\n... plotting tree" resultTree.dotPrint2() print "\nDone. Result saved in " + outputName + ".\n" exit(1)