def test_expected_value(self): for i, pdfs in enumerate(zip(self.priors, self.posteriors)): prior, posterior = pdfs with self.subTest(i=i): bayesparam = beer.BayesianParameter(prior, posterior) self.assertArraysAlmostEqual( bayesparam.expected_value().numpy(), posterior.expected_sufficient_statistics.numpy())
def test_create(self): for i, pdfs in enumerate(zip(self.priors, self.posteriors)): prior, posterior = pdfs with self.subTest(i=i): bayesparam = beer.BayesianParameter(prior, posterior) self.assertArraysAlmostEqual( bayesparam.natural_grad.numpy(), np.zeros(len(bayesparam.natural_grad)))
def test_expected_value(self): for i in range(self.nparams): with self.subTest(i=i): pdfs = zip(self.priors[i], self.posteriors[i]) params = [ beer.BayesianParameter(prior, posterior) for prior, posterior in pdfs ] param_set = beer.BayesianParameterSet(params) for j, param in enumerate(param_set): posterior = self.posteriors[i][j] self.assertArraysAlmostEqual( param.expected_value().numpy(), posterior.expected_sufficient_statistics.numpy())
def test_create(self): for i in range(self.nparams): with self.subTest(i=i): pdfs = zip(self.priors[i], self.posteriors[i]) params = [ beer.BayesianParameter(prior, posterior) for prior, posterior in pdfs ] param_set = beer.BayesianParameterSet(params) self.assertEqual(len(params), len(param_set)) for param in param_set: self.assertArraysAlmostEqual( param.natural_grad.numpy(), np.zeros(len(param.natural_grad)))