Example #1
0
def get(force=False):

    if not os.path.exists("data/fit.p") or force:
        fit_b = compute.get_fit(force)

    else:
        fit_b = backup.load("data/fit.p")

    r_values = np.sort(np.unique(fit_b.r))
    s_values = (False, True)

    exp_conditions = list(it.product(r_values, s_values))

    data = []

    scores_to_plot = score.Score.names  # fit.Score.names
    n_dim = len(scores_to_plot)

    for r_value, s_value in exp_conditions:

        cond0 = fit_b.r == r_value
        cond1 = fit_b.display_opponent_score == int(s_value)

        cond = cond0 * cond1

        n = np.sum(cond)

        d = np.zeros((n_dim, n))

        for i, sc in enumerate(scores_to_plot):
            d[i] = fit_b.fit_scores[sc][cond]

        data.append(d)

    return data
Example #2
0
    def compute_means(self):
        """
        computes means for all simulations

        """

        for s in self.strategies.values():

            file_name = "data/simulation_{}_vs_{}.p".format(*s)
            backups = backup.load(file_name)

            mean_score = np.zeros(len(backups))
            mean_distance = np.zeros(len(backups))
            mean_price = np.zeros(len(backups))
            radius = np.zeros(len(backups))

            for i, b in enumerate(backups):

                mean_score[i] = np.mean(b.profits[:, :])

                d = np.absolute(b.positions[:, 0] -
                                b.positions[:, 1]) / self.n_positions

                mean_distance[i] = np.mean(d)

                mean_price[i] = np.mean(b.prices[:, :])

                radius[i] = b.r

            for r in (0.25, 0.5):
                self.means[s][r]["price"] = np.mean(mean_price[radius == r])
                self.means[s][r]["distance"] = np.mean(
                    mean_distance[radius == r])
                self.means[s][r]["score"] = np.mean(mean_score[radius == r])
Example #3
0
def get_fit_b_all(args):

    # get all strategies
    s = list(run_simulation.treat_args("all"))
    # store strategies
    strategies = {k: v for k, v in zip(range(len(s)), s)}
    reversed_strategies = {k: v for v, k in strategies.items()}

    file_name = "data/fit_simulation_all.p"

    if not os.path.exists(file_name) or args.do_it_again:

        backups = []

        for strategy in strategies.values():

            args.p0_strategy, args.p1_strategy = strategy

            backups.append(
                get_fit(
                    force=args.force,
                    p0_strategy=args.p0_strategy,
                    p1_strategy=args.p1_strategy,
                    softmax=args.softmax,
                    reversed_strategies=reversed_strategies,
                )
            )

        backup.save(obj=backups, file_name=file_name)

    else:
        backups = backup.load(file_name=file_name)

    return backups, strategies
Example #4
0
def get_fit_b_ind(args):

    file_name = "data/fit_simulation_{}_vs_{}.p".format(args.p0_strategy, args.p1_strategy)
    if not os.path.exists(file_name) or args.force:
        fit_b = get_fit(args.force, args.p0_strategy, args.p1_strategy, args.softmax)
    else:
        fit_b = backup.load(file_name)

    return fit_b
Example #5
0
def _get_bot_mean_profits(strategy0, strategy1):

    backups = backup.load(
        file_name="data/simulation_{}_strategy_vs_{}_strategy.p".format(strategy0, strategy1)
    )

    means = []

    for r in (0.25, 0.5):
        profits = []
        for b in backups:
            if b.r == r:
                profits.append(np.mean(b.profits[:, 0]))
        means.append(np.mean(profits))

    return means
Example #6
0
def get_profile_all(args):

    strategies = {
        0: ("profit", "profit"),
        1: ("competition", "competition"),
    }

    file_name = "data/round_profiler_all.p"

    if not os.path.exists(file_name) or args.do_it_again:
        backups = get_all_backup_round_profiler(args.force, strategies)
        backup.save(obj=backups, file_name=file_name)

    else:
        backups = backup.load(file_name=file_name)

    return backups, strategies
def main(args):

    if not args.all:

        run_simulation.treat_args(args.p0_strategy, args.p1_strategy)

        file_name = "data/simulation_{}_vs_{}.p".format(args.p0_strategy, args.p1_strategy)

        backups = run_simulation.backup_simulation(file_name, args)

        individual_plot(backups, args.p0_strategy, args.p1_strategy)

    else:

        # get all strategies
        s = list(run_simulation.treat_args("all"))

        # store strategies
        strategies = {k: v for k, v in zip(range(len(s)), s)}
        reversed_strategies = {k: v for v, k in strategies.items()}

        file_name = "data/simulation_all.p"

        if not os.path.exists(file_name) or args.force:

            backups = []

            for strategy in strategies.values():

                args.p0_strategy, args.p1_strategy = strategy
                file_name = "data/simulation_{}_vs_{}.p".format(args.p0_strategy, args.p1_strategy)
                backups += run_simulation.backup_simulation(file_name=file_name, args=args)

            backup.save(obj=backups, file_name=file_name)

        else:
            backups = backup.load(file_name=file_name)

        # Finally plot all the data
        all_plot(backups, strategies, reversed_strategies)
Example #8
0
def backup_simulation(file_name, args):

    if not os.path.exists(file_name) or args.force:
        run(p0_strategy=args.p0_strategy, p1_strategy=args.p1_strategy)

    return backup.load(file_name=file_name)
Example #9
0
def get_fit(force, p0_strategy, p1_strategy, softmax, reversed_strategies=None):

    file_name = "data/simulation_{}_vs_{}.p".format(p0_strategy, p1_strategy)

    if not os.path.exists(file_name) or force:

        run_simulation.main(
            p0_strategy=p0_strategy,
            p1_strategy=p1_strategy
        )

    backups = backup.load(file_name)

    m = {
        0.25: fit.Model(r=0.25),
        0.50: fit.Model(r=0.5)
    }

    temp_c = []
    prediction_accuracy_c = []

    temp_p = []
    prediction_accuracy_p = []

    r = []
    score = []
    strategy = []
    idx_strategy = []

    tqdm.write("Creating fit backup file...")

    for b in tqdm(backups):

        for player in (0, 1):

            kwargs = {
                "dm_model": m[b.r],
                "str_method": "p_profit",
                "firm_id": player,
                "active_player_t0": b.active_player_t0,
                "positions": b.positions,
                "prices": b.prices,
                "t_max": b.t_max
            }

            if not softmax:

                # --- Profit based ---- #

                rm = RunModel(**kwargs)
                p = rm.run(temp=None) * -1

                temp_p.append(-1)
                prediction_accuracy_p.append(p)

                # --- Competition based --- #

                kwargs["str_method"] = "p_competition"

                rm = RunModel(**kwargs)
                c = rm.run(temp=None) * -1

                temp_c.append(-1)
                prediction_accuracy_c.append(c)

            else:

                # --- Profit based ---- #

                best_temp = optimize_model(**kwargs)

                rm = RunModel(**kwargs)
                p = rm.run(temp=best_temp) * -1

                temp_p.append(best_temp)
                prediction_accuracy_p.append(p)

                # --- Competition based --- #

                kwargs["str_method"] = "p_competition"

                best_temp = optimize_model(**kwargs)
                rm = RunModel(**kwargs)
                c = rm.run(temp=best_temp) * -1

                temp_c.append(best_temp)
                prediction_accuracy_c.append(c)

            r.append(b.r)
            score.append(np.sum(b.profits[:, player]))
            strategy.append(p0_strategy if not player else p1_strategy)
            if reversed_strategies:
                idx_strategy.append(reversed_strategies[(p0_strategy, p1_strategy)])

    fit_b = BackupFit(
        temp_c=np.array(temp_c),
        temp_p=np.array(temp_p),
        prediction_accuracy_p=np.array(prediction_accuracy_p),
        prediction_accuracy_c=np.array(prediction_accuracy_c),
        r=np.array(r),
        score=np.array(score),
        strategy=np.array(strategy),
        idx_strategy=np.array(idx_strategy)
    )

    file_name = "data/fit_simulation_{}_vs_{}.p".format(p0_strategy, p1_strategy)

    backup.save(fit_b, file_name)

    return fit_b