Example #1
0
def test_T8(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], (-X[1] / const[0]), 1

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1, 0], [0, -1 / const[0], 0], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1, Xf[0] - 2, X0[2]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1, 0, -1], [2, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (2 - np.exp(-1 / sol.const[0]) - np.exp(
        -sol.y[:, 2] / sol.const[0])) / (1 - np.exp(-1 / sol.const[0]))
    e2 = -1 / (sol.const[0] * np.exp(sol.y[:, 2] / sol.const[0]) *
               (1 / np.exp(1 / sol.const[0]) - 1))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #2
0
def test_T30(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], (X[0] - X[0] * X[1]) / const[0]

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1], [(1 - X[1]) / const[0], -X[0] / const[0]]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] + 7 / 6, Xf[0] - 3 / 2

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=8)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[-7 / 6, 0], [3 / 2, 0]])
    sol.const = np.array([const])
    cc = np.linspace(const * 10, const, 10)
    for c in cc:
        sol = copy.deepcopy(sol)
        sol.const = np.array([c])
        sol = algo.solve(sol)['sol']

    assert sol.converged
Example #3
0
def test_T9(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1], 2 * (-(4 * X[2] * X[1] + 2 * X[0]) /
                              (const[0] + X[2]**2)), 2

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 -4 / (X[2]**2 + const[0]), -(8 * X[2]) / (X[2]**2 + const[0]),
                 (4 * X[2] * (2 * X[0] + 4 * X[1] * X[2])) /
                 (X[2]**2 + const[0])**2 - (8 * X[1]) / (X[2]**2 + const[0])
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1 / (1 + const[0]), Xf[0] - 1 / (1 +
                                                        const[0]), X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=2)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1 / (1 + const), 0, -1], [1 / (1 + const), 1, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = 1 / (sol.const[0] + sol.y[:, 2]**2)
    e2 = -(2 * sol.y[:, 2]) / (sol.y[:, 2]**2 + sol.const[0])**2
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #4
0
def test_T31(algorithm, const):
    def odefun(X, u, p, const):
        return np.sin(X[1]), X[2], -X[3]/const[0],\
               ((X[0]-1)*np.cos(X[1]) - X[2]/np.cos(X[1]) - const[0]*X[3]*np.tan(X[1]))/const[0]

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, np.cos(X[1]), 0, 0], [0, 0, 1, 0], [0, 0, 0, -1 / const[0]],
             [
                 np.cos(X[1]) / const[0],
                 -(np.sin(X[1]) * (X[0] - 1) + const[0] * X[3] *
                   (np.tan(X[1])**2 + 1) +
                   (X[2] * np.sin(X[1])) / np.cos(X[1])**2) / const[0],
                 -1 / (const[0] * np.cos(X[1])), -np.tan(X[1])
             ]])
        df_dp = np.empty((4, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], X0[2], Xf[0], Xf[2]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=12)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[0, 0, 0, 0], [0, 0, 0, 0]])
    sol.const = np.array([const])
    cc = np.linspace(const * 10, const, 10)
    for c in cc:
        sol = copy.deepcopy(sol)
        sol.const = np.array([c])
        sol = algo.solve(sol)['sol']

    assert sol.converged
Example #5
0
def test_T2(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], X[1] / const[0]

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1], [0, 1 / const[0]]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1, Xf[0]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 1], [0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (1.e0 - np.exp(
        (sol.t - 1.e0) / sol.const)) / (1.e0 - np.exp(-1.e0 / sol.const))
    e2 = np.exp((sol.t - 1) / sol.const) / (sol.const *
                                            (1 / np.exp(1 / sol.const) - 1))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #6
0
def test_T16(algorithm, const):
    def odefun(X, u, p, const):
        return 1 * X[1], 1 * (-X[0] * np.pi**2 / (4 * const[0])), 1

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1, 0], [-np.pi**2 / (4 * const[0]), 0, 0],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], Xf[0] - np.sin(np.pi / (2 * np.sqrt(const[0]))), X0[2]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.sin(np.pi * sol.y[:, 2] / (2 * np.sqrt(sol.const[0])))
    e2 = (np.pi * np.cos(
        (np.pi * sol.y[:, 2]) /
        (2 * np.sqrt(sol.const[0])))) / (2 * np.sqrt(sol.const[0]))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #7
0
def test_T21(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], (X[0] * (1 + X[0]) -
                      np.exp(-2 * X[2] / np.sqrt(const[0]))) / const[0], 1

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1, 0],
                          [(2 * X[0] + 1) / const[0], 0,
                           (2 * np.exp(-(2 * X[2]) / np.sqrt(const[0]))) /
                           const[0]**(3 / 2)], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1, Xf[0] - np.exp(-1 / np.sqrt(const[0])), X0[2]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.exp(-sol.y[:, 2] / np.sqrt(const))
    e2 = -np.exp(-sol.y[:, 2] / np.sqrt(const)) / np.sqrt(const)
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #8
0
def test_T13(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1],\
               2 * ((X[0] - const[0] * np.pi ** 2 * np.cos(np.pi * X[2]) - np.cos(np.pi * X[2])) / const[0]),\
               2

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 2 / const[0], 0,
                 (2 * (np.pi * np.sin(np.pi * X[2]) +
                       const[0] * np.pi**3 * np.sin(np.pi * X[2]))) / const[0]
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], Xf[0] + 1, X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=2)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, -1], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp(
        -(1 + sol.y[:, 2]) / np.sqrt(sol.const[0]))
    e2 = -np.pi * np.sin(
        np.pi * sol.y[:, 2]) - 1 / (np.sqrt(sol.const[0]) * np.exp(
            (sol.y[:, 2] + 1) / np.sqrt(sol.const[0])))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #9
0
def test_T32(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], X[2], X[3], (X[1] * X[2] - X[0] * X[3]) / const[0]

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
                          [
                              -X[3] / const[0], X[2] / const[0],
                              X[1] / const[0], -X[0] / const[0]
                          ]])
        df_dp = np.empty((4, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], X0[1], Xf[0] - 1, Xf[1]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=4)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[0, 0, 0, 0], [1, 0, 0, 0]])
    sol.const = np.array([const])
    sol = algo.solve(sol)['sol']

    assert sol.converged
Example #10
0
def test_T5(algorithm, const):
    def odefun(X, u, p, const):
        return (2 * X[1],
                2 * ((X[0] + X[2] * X[1] -
                      (1 + const[0] * np.pi**2) * np.cos(np.pi * X[2]) +
                      X[2] * np.pi * np.sin(np.pi * X[2])) / const[0]), 2)

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 2 / const[0], 2 * X[2] / const[0],
                 (2 * (X[1] + np.pi * np.sin(np.pi * X[2]) +
                       np.pi * np.sin(np.pi * X[2]) * (const * np.pi**2 + 1) +
                       np.pi * np.pi * X[2] * np.cos(np.pi * X[2]))) / const[0]
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] + 1, Xf[0] + 1, X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2])
    e2 = -np.pi * np.sin(np.pi * sol.y[:, 2])
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #11
0
def test_T4(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1], 2 * (((1 + const[0]) * X[0] - X[1]) / const[0]), 2

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 2,
              0], [2 * (1 + const[0]) / const[0], 2 * (-1) / const[0], 0],
             [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1 - np.exp(-2), Xf[0] - 1 - np.exp(
            -2 * (1 + const[0]) / const[0]), X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.exp(sol.y[:, 2] - 1) + np.exp(-((1 + sol.const[0]) *
                                            (1 + sol.y[:, 2]) / sol.const[0]))
    e2 = np.exp(sol.y[:, 2] - 1) - (sol.const[0] + 1) / (sol.const[0] * np.exp(
        (sol.y[:, 2] + 1) * (sol.const[0] + 1) / sol.const[0]))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #12
0
def test_T17(algorithm, const):
    def odefun(X, u, p, const):
        return 0.2 * X[1], 0.2 * (-3 * const[0] * X[0] /
                                  (const[0] + X[2]**2)**2), 0.2

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 0.2, 0],
             [
                 -(3 * const[0]) / (5 * (X[2]**2 + const[0])**2), 0,
                 (12 * const[0] * X[0] * X[2]) / (5 * (X[2]**2 + const[0])**3)
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] + 0.1 / np.sqrt(const[0] + 0.01), Xf[0] - 0.1 / np.sqrt(
            const[0] + 0.01), X0[2] + 0.1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, 0], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = sol.y[:, 2] / np.sqrt(sol.const[0] + sol.y[:, 2]**2)
    e2 = 1 / np.sqrt(sol.y[:, 2]**2 + sol.const[0]) - sol.y[:, 2]**2 / (
        sol.y[:, 2]**2 + sol.const[0])**(3 / 2)
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #13
0
def test_T10(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1], 2 * (-X[2] * X[1] / const[0]), 2

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 2, 0],
                          [0, 2 * (-X[2]) / const[0], 2 * (-X[1] / const[0])],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], Xf[0] - 2, X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0, -1], [2, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = 1 + erf(sol.y[:, 2] / np.sqrt(2 * sol.const[0])) / erf(
        1 / np.sqrt(2 * sol.const[0]))
    e2 = np.sqrt(2) / (np.sqrt(np.pi) * np.sqrt(sol.const[0]) * np.exp(
        sol.y[:, 2]**2 /
        (2 * sol.const[0])) * erf(np.sqrt(2) / (2 * np.sqrt(sol.const[0]))))
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #14
0
def test_T24(algorithm, const):
    def odefun(X, u, p, const=None):
        Ax = 1 + X[2]**2
        Apx = 2 * X[2]
        y = 1.4
        return (X[1],
                (((1 + y) / 2 - const[0] * Apx) * X[0] * X[1] - X[1] / X[0] -
                 (Apx / Ax) * (1 - (y - 1) / 2 * X[0]**2)) /
                (const[0] * Ax * X[0]), 1)

    def odejac(X, u, p, const):
        y = 1.4
        df_dy = np.array([
            [0, 1, 0],
            [(X[1] * (y / 2 - 2 * const * X[2] + 1 / 2) + X[1] / X[0]**2 +
              (4 * X[0] * X[2] * (y / 2 - 1 / 2)) /
              (X[2]**2 + 1)) / (const[0] * X[0] * (X[2]**2 + 1)) -
             ((2 * X[2] * ((y / 2 - 1 / 2) * X[0]**2 - 1)) /
              (X[2]**2 + 1) - X[1] / X[0] + X[0] * X[1] *
              (y / 2 - 2 * const[0] * X[2] + 1 / 2)) / (const[0] * X[0]**2 *
                                                        (X[2]**2 + 1)),
             (X[0] * (y / 2 - 2 * const[0] * X[2] + 1 / 2) - 1 / X[0]) /
             (const[0] * X[0] * (X[2]**2 + 1)),
             -((4 * X[2]**2 * ((y / 2 - 1 / 2) * X[0]**2 - 1)) /
               (X[2]**2 + 1)**2 - (2 * ((y / 2 - 1 / 2) * X[0]**2 - 1)) /
               (X[2]**2 + 1) + 2 * const[0] * X[0] * X[1]) / (const[0] * X[0] *
                                                              (X[2]**2 + 1)) -
             (2 * X[2] * ((2 * X[2] * ((y / 2 - 1 / 2) * X[0]**2 - 1)) /
                          (X[2]**2 + 1) - X[1] / X[0] + X[0] * X[1] *
                          (y / 2 - 2 * const[0] * X[2] + 1 / 2))) /
             (const[0] * X[0] * (X[2]**2 + 1)**2)], [0, 0, 0]
        ])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const=None):
        return X0[0] - 0.9129, Xf[0] - 0.375, X0[2]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=4)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[1, 1, 0], [0.1, 0.1, 1]])
    sol.const = np.array([const])
    cc = np.linspace(const * 10, const, 10)
    for c in cc:
        sol = copy.deepcopy(sol)
        sol.const = np.array([c])
        sol = algo.solve(sol)['sol']

    assert sol.converged
Example #15
0
def test_Shooting_3():
    # This problem contains a parameter, but it is not explicit in the BCs.
    # Since time is buried in the ODEs, this tests if the BVP solver calculates
    # sensitivities with respect to parameters.
    def odefun(X, u, p, const):
        return 1 * p[0]

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 0, Xf[0] - 2

    algo = Shooting(odefun, None, bcfun)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0], [0]])
    solinit.dynamical_parameters = np.array([1])
    solinit.const = np.array([])
    out = algo.solve(solinit)['sol']
    assert abs(out.dynamical_parameters - 2) < tol
Example #16
0
def test_T7(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1], 2 * (
            (-X[2] * X[1] + X[0] -
             (1.0e0 + const[0] * np.pi**2) * np.cos(np.pi * X[2]) -
             np.pi * X[2] * np.sin(np.pi * X[2])) / const[0]), 2

    def odejac(X, u, p, const):
        df_dy = np.array(
            [[0, 2, 0],
             [
                 2 / const[0], -2 * X[2] / const[0],
                 -(2 * (X[1] + np.pi * np.sin(np.pi * X[2]) + np.pi**2 * X[2] *
                        np.cos(np.pi * X[2]) - np.pi * np.sin(np.pi * X[2]) *
                        (const[0] * np.pi**2 + 1))) / const[0]
             ], [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] + 1, Xf[0] - 1, X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[-1, 0, -1], [1, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.cos(np.pi * sol.y[:, 2]) + sol.y[:, 2] + (
        sol.y[:, 2] * erf(sol.y[:, 2] / np.sqrt(2.0e0 * sol.const[0])) +
        np.sqrt(2 * sol.const[0] / np.pi) * np.exp(-sol.y[:, 2]**2 /
                                                   (2 * sol.const[0]))
    ) / (erf(1.0e0 / np.sqrt(2 * sol.const[0])) +
         np.sqrt(2.0e0 * sol.const[0] / np.pi) * np.exp(-1 /
                                                        (2 * sol.const[0])))
    e2 = erf((np.sqrt(2) * sol.y[:, 2]) / (2 * np.sqrt(sol.const[0]))) / (
        erf(np.sqrt(2) / (2 * np.sqrt(sol.const[0]))) +
        (np.sqrt(2) * np.sqrt(sol.const[0])) /
        (np.sqrt(np.pi) * np.exp(1 / (2 * sol.const[0])))) - np.pi * np.sin(
            np.pi * sol.y[:, 2]) + 1
    assert all(e1 - sol.y[:, 0] < tol)
    assert all(e2 - sol.y[:, 1] < tol)
Example #17
0
def test_T23(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], 1 / const[0] * np.sinh(X[0] / const[0])

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1], [np.cosh(X[0] / const[0]) / const[0]**2, 0]])
        df_dp = np.empty((2, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], Xf[0] - 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[0, 0], [1, 0]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    assert sol.converged
Example #18
0
def test_R18(const):
    def odefun(X, u, p, const):
        return -X[0] / const[0]

    def quadfun(X, u, p, const):
        return X[0]

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return q0[0] - 1, qf[0] - np.exp(-1 / const[0])

    algo = Shooting(odefun, quadfun, bcfun)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1], [1]])
    solinit.q = np.array([[0], [0]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = np.exp(-sol.t / sol.const[0])
    e2 = -1 / (sol.const[0] * np.exp(sol.t / sol.const[0]))
    assert all(e1 - sol.q[:, 0] < tol)
    assert all(e2 - sol.y[:, 0] < tol)
Example #19
0
def test_Shooting_1():
    # Full 2PBVP test problem
    # This is the simplest BVP

    def odefun(X, u, p, const):
        return X[1], -abs(X[0])

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0], Xf[0] + 2

    algo = Shooting(odefun, None, bcfun)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 4, 2)
    solinit.y = np.array([[0, 1], [0, 1]])
    solinit.const = np.array([])
    out = algo.solve(solinit)['sol']
    assert out.y[0][0] < tol
    assert out.y[0][1] - 2.06641646 < tol
    assert out.y[-1][0] + 2 < tol
    assert out.y[-1][1] + 2.87588998 < tol
    assert out.t[-1] - 4 < tol
    assert abs(out.y[0][1] - solinit.y[0][1]) > tol
    assert abs(out.y[-1][0] - solinit.y[-1][0]) - 2 < tol
Example #20
0
def test_T15(algorithm, const):
    def odefun(X, u, p, const):
        return 2 * X[1], 2 * (X[2] * X[0] / const[0]), 2

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 2, 0],
                          [2 * (X[2] / const[0]), 0, 2 * (X[0] / const[0])],
                          [0, 0, 0]])
        df_dp = np.empty((3, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] - 1, Xf[0] - 1, X0[2] + 1

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm)
    algo.set_derivative_jacobian(odejac)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1, 0, -1], [0, 0, 1]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    assert sol.converged is True
Example #21
0
def test_T33(algorithm, const):
    def odefun(X, u, p, const):
        return X[1], (X[0] * X[3] -
                      X[2] * X[1]) / const[0], X[3], X[4], X[5], (
                          -X[2] * X[5] - X[0] * X[1]) / const[0]

    def odejac(X, u, p, const):
        df_dy = np.array([[0, 1, 0, 0, 0, 0],
                          [
                              X[3] / const[0], -X[2] / const[0],
                              -X[1] / const[0], X[0] / const[0], 0, 0
                          ], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0],
                          [0, 0, 0, 0, 0, 1],
                          [
                              -X[1] / const[0], -X[0] / const[0],
                              -X[5] / const[0], 0, 0, -X[2] / const[0]
                          ]])
        df_dp = np.empty((6, 0))
        return df_dy, df_dp

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return X0[0] + 1, X0[2], X0[3], Xf[0] - 1, Xf[2], Xf[3]

    algo = Shooting(odefun, None, bcfun, algorithm=algorithm, num_arcs=12)
    algo.set_derivative_jacobian(odejac)
    sol = Trajectory()
    sol.t = np.linspace(0, 1, 2)
    sol.y = np.array([[-1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]])
    sol.const = np.array([const])
    cc = np.linspace(const * 10, const, 10)
    for c in cc:
        sol = copy.deepcopy(sol)
        sol.const = np.array([c])
        sol = algo.solve(sol)['sol']

    assert sol.converged
Example #22
0
def test_Shooting_4():
    # This problem contains a quad and tests if the bvp solver correctly
    # integrates the quadfun. Also tests multiple shooting.

    def odefun(x, u, p, const):
        return -x[1], x[0]

    def quadfun(x, u, p, const):
        return x[0]

    def bcfun(X0, q0, u0, Xf, qf, uf, params, ndp, const):
        return X0[0], X0[1] - 1, qf[0] - 1.0

    algo = Shooting(odefun, quadfun, bcfun, num_arcs=4)
    solinit = Trajectory()
    solinit.t = np.linspace(0, np.pi / 2, 2)
    solinit.y = np.array([[1, 0], [1, 0]])
    solinit.q = np.array([[0], [0]])
    solinit.const = np.array([])
    out = algo.solve(solinit)['sol']
    assert (out.y[0, 0] - 0) < tol
    assert (out.y[0, 1] - 1) < tol
    assert (out.q[0, 0] - 2) < tol
    assert (out.q[-1, 0] - 1) < tol
Example #23
0
def test_R8(const):
    def odefun(X, u, p, const):
        return -X[0] / const[0]

    def quadfun(X, u, p, const):
        return X[0]

    def bcfun(X0, q0, u0, Xf, qf, uf, p, ndp, const):
        return q0[0] - 1, qf[0] - 2

    algo = Shooting(odefun, quadfun, bcfun)
    solinit = Trajectory()
    solinit.t = np.linspace(0, 1, 2)
    solinit.y = np.array([[1], [1]])
    solinit.q = np.array([[0], [0]])
    solinit.const = np.array([const])
    sol = algo.solve(solinit)['sol']

    e1 = (1.e0 - np.exp(
        (sol.t - 1.e0) / sol.const)) / (1.e0 - np.exp(-1.e0 / sol.const))
    e2 = np.exp((sol.t - 1) / sol.const) / (sol.const *
                                            (1 / np.exp(1 / sol.const) - 1))
    assert all(e1 - sol.q[:, 0] < tol)
    assert all(e2 - sol.y[:, 0] < tol)