def main(params):

    save_dir = Path(params.dataset_path)
    save_dir.mkdir(parents=True, exist_ok=True)

    total = 0

    for i in tqdm.tqdm(range(params.n_episodes), desc='Episode'):
        with make_suite('FullTown01-v1',
                        port=params.port,
                        planner=params.planner) as env:
            filepath = save_dir.joinpath('%03d' % i)

            if filepath.exists():
                continue

            data = None

            while data is None:
                data = get_episode(env, params)

            lmdb_env = lmdb.open(str(filepath), map_size=int(1e10))
            n = len(data)

            with lmdb_env.begin(write=True) as txn:
                txn.put('len'.encode(), str(n).encode())

                for i, x in enumerate(data):
                    txn.put(('rgb_%04d' % i).encode(),
                            np.ascontiguousarray(x['rgb']).astype(np.uint8))
                    txn.put(
                        ('depth_%04d' % i).encode(),
                        np.ascontiguousarray(x['depth']).astype(np.float32))
                    txn.put(('segmentation_%04d' % i).encode(),
                            np.ascontiguousarray(x['segmentation']).astype(
                                np.uint8))
                    txn.put(
                        ('birdview_%04d' % i).encode(),
                        np.ascontiguousarray(x['birdview']).astype(np.uint8))
                    txn.put(('measurements_%04d' % i).encode(),
                            np.ascontiguousarray(x['measurements']).astype(
                                np.float32))
                    txn.put(
                        ('control_%04d' % i).encode(),
                        np.ascontiguousarray(x['control']).astype(np.float32))

            total += len(data)

    print('Total frames: %d' % total)
def run(model_path,
        port,
        suite,
        big_cam,
        seed,
        autopilot,
        resume,
        max_run=10,
        show=False):
    log_dir = model_path.parent
    config = bzu.load_json(str(log_dir / 'config.json'))

    total_time = 0.0

    for suite_name in get_suites(suite):
        tick = time.time()
        import pdb
        pdb.set_trace()
        benchmark_dir = log_dir / 'benchmark' / model_path.stem / (
            '%s_seed%d' % (suite_name, seed))
        benchmark_dir.mkdir(parents=True, exist_ok=True)

        with make_suite(suite_name, port=port, big_cam=big_cam) as env:
            agent_maker = _agent_factory_hack(model_path, config, autopilot)

            run_benchmark(agent_maker,
                          env,
                          benchmark_dir,
                          seed,
                          autopilot,
                          resume,
                          max_run=max_run,
                          show=show)

        elapsed = time.time() - tick
        total_time += elapsed

        print('%s: %.3f hours.' % (suite_name, elapsed / 3600))

    print('Total time: %.3f hours.' % (total_time / 3600))
def run(args, model_path, port, suite, seed, resume, max_run):
    log_dir = model_path

    total_time = 0.0

    for suite_name in get_suites(suite):
        tick = time.time()

        benchmark_dir = log_dir / "benchmark" / ("%s_seed%d" % (suite_name, seed))
        benchmark_dir.mkdir(parents=True, exist_ok=True)

        with make_suite(suite_name, port=port, crop_sky=args.crop_sky) as env:
            from bird_view.models import agent_IAs_RL

            agent_class = agent_IAs_RL.AgentIAsRL

            agent_maker = lambda: agent_class(args)
            run_benchmark(agent_maker, env, benchmark_dir, seed, resume, max_run=max_run)
        elapsed = time.time() - tick
        total_time += elapsed

        print("%s: %.3f hours." % (suite_name, elapsed / 3600))

    print("Total time: %.3f hours." % (total_time / 3600))
def rollout(replay_buffer,
            coord_converter,
            net,
            teacher_net,
            episode,
            image_agent_kwargs=dict(),
            birdview_agent_kwargs=dict(),
            episode_length=1000,
            n_vehicles=100,
            n_pedestrians=250,
            port=2000,
            planner="new"):

    from models.image import ImageAgent
    from models.birdview import BirdViewAgent

    decay = np.array([0.7**i for i in range(5)])
    xy_bias = np.array([0.7, 0.3])

    weathers = list(cu.TRAIN_WEATHERS.keys())

    def _get_weight(a, b):
        loss_weight = np.mean((np.abs(a - b) * xy_bias).sum(axis=-1) * decay,
                              axis=-1)
        x_weight = np.maximum(
            np.mean(a[..., 0], axis=-1),
            np.mean(a[..., 0] * -1.4, axis=-1),
        )

        return loss_weight

    num_data = 0
    progress = tqdm.tqdm(range(episode_length * len(weathers)), desc='Frame')

    for weather in weathers:

        data = list()

        while len(data) < episode_length:
            with make_suite('FullTown01-v1', port=port,
                            planner=planner) as env:
                start, target = env.pose_tasks[np.random.randint(
                    len(env.pose_tasks))]
                env_params = {
                    'weather': weather,
                    'start': start,
                    'target': target,
                    'n_pedestrians': n_pedestrians,
                    'n_vehicles': n_vehicles,
                }

                env.init(**env_params)
                env.success_dist = 5.0

                image_agent_kwargs['model'] = net
                birdview_agent_kwargs['model'] = teacher_net

                image_agent = ImageAgent(**image_agent_kwargs)
                birdview_agent = BirdViewAgent(**birdview_agent_kwargs)

                while not env.is_success() and not env.collided:
                    env.tick()

                    observations = env.get_observations()
                    image_control, _image_points = image_agent.run_step(
                        observations, teaching=True)
                    _image_points = coord_converter(_image_points)
                    image_points = _image_points / (0.5 * CROP_SIZE) - 1
                    birdview_control, birdview_points = birdview_agent.run_step(
                        observations, teaching=True)
                    weight = _get_weight(birdview_points, image_points)

                    control = get_control(image_control, birdview_control,
                                          episode)

                    env.apply_control(control)

                    data.append({
                        'rgb_img':
                        observations["rgb"].copy(),
                        'cmd':
                        int(observations["command"]),
                        'speed':
                        np.linalg.norm(observations["velocity"]),
                        'target':
                        birdview_points,
                        'weight':
                        weight,
                        'birdview_img':
                        crop_birdview(observations['birdview'], dx=-10),
                    })

                    progress.update(1)

                    # DEBUG
                    if len(data) >= episode_length:
                        break
                    # DEBUG END

                print("Collided: ", env.collided)
                print("Success: ", env.is_success())

                if env.collided:
                    data = data[:-5]

        for datum in data:
            replay_buffer.add_data(**datum)
            num_data += 1
Example #5
0
def rollout(net,
            image_agent_kwargs=dict(),
            episode_length=1000,
            n_vehicles=100,
            n_pedestrians=250,
            port=2000,
            planner="new",
            seed=2020):

    from models.image import ImageAgent

    num_data = 0

    weathers = list(cu.TRAIN_WEATHERS.keys())
    fit = 0
    tot_t = 0
    for weather in weathers:

        data = list()

        with make_suite('FullTown01-v1', port=port, planner=planner) as env:
            start, target = env.pose_tasks[np.random.randint(
                len(env.pose_tasks))]
            env_params = {
                'weather': weather,
                'start': start,
                'target': target,
                'n_pedestrians': n_pedestrians,
                'n_vehicles': n_vehicles,
            }
            # seems hacky, taken from https://github.com/dianchen96/LearningByCheating/blob/release-0.9.6/benchmark/run_benchmark.py#L167
            env.seed = seed
            env.init(**env_params)

            # success distance threshold from target
            env.success_dist = 10.0

            image_agent_kwargs['model'] = net

            image_agent = ImageAgent(**image_agent_kwargs)

            coll_actors = None
            route_comp = 0
            red_count = -1
            stop_count = -1

            time_step = 0
            # TODO: just using (https://carlachallenge.org/challenge/) as temp sol
            # i.e. terminating only if critical infraction as defined above
            # also keeping a timeout episode_length
            st_t = time.time()
            while True:
                if env.is_success() or time_step >= episode_length:
                    break

                env.tick()
                coll_actors = env.collision_actors
                route_comp = env.route_completed
                red_count = env.red_count
                stop_count = env.stop_count

                if time_step % 100 == 0:
                    print('weather {}'.format(weather))
                    print('time steps so far {}'.format(time_step))
                    print('route completed so far {}'.format(route_comp))
                    print('coll actors so far {}'.format(coll_actors))
                    print('red count so far {}'.format(red_count))
                    print('stop count so far {}'.format(stop_count))

                observations = env.get_observations()
                control = image_agent.run_step(observations)
                diagnostic = env.apply_control(control)
                time_step += 1

            stop_pen = 0.8**stop_count
            red_pen = 0.7**red_count
            coll_stat_pen = 1.
            coll_veh_pen = 1.
            coll_ped_pen = 1.
            for c in coll_actors:
                if c == TrafficEventType.COLLISION_STATIC:
                    coll_stat_pen *= 0.65
                elif c == TrafficEventType.COLLISION_VEHICLE:
                    coll_veh_pen *= 0.6
                elif c == TrafficEventType.COLLISION_PEDESTRIAN:
                    coll_ped_pen *= 0.5

            # computing driving score of episode
            infraction_pen = stop_pen * red_pen * (coll_stat_pen *
                                                   coll_veh_pen * coll_ped_pen)
            score = route_comp * infraction_pen
            end_t = time.time()
            print('========= Episode Stats (Weather {}) ========='.format(
                weather))
            print('Total time: {}'.format(time_step))
            print('Route Completion Percentage: {}'.format(route_comp))
            print('Collided into: {}'.format(coll_actors))
            print('Number of Red Lights run: {}'.format(red_count))
            print('Number of Stop Signs run: {}'.format(stop_count))
            print('Driving Score: {}'.format(score))
            print('Epsiode Time (real-time, seconds): {}'.format(end_t - st_t))
            print('=================================')
            fit += score
            tot_t += (end_t - st_t)

    print('Total Fitness: {}'.format(fit))
    print('Total Time (s): {}'.format(tot_t))
    return fit
def env_rollout(weather, start, target, n_pedestrians, n_vehicles, net,
                image_agent_kwargs, ImageAgent, suite_name, port, planner,
                env_seed, valuation_file_path, indiv_idx, episode_length):

    # Instantiate environment "env" through make_suite (in benchmark.__init__.py)
    # Note: make_suite provides a wrapper to launch and access the CARLA client and server;
    # magic functions, performs __init__, __enter__, __exit__ are executed in this order inside the "with" loop
    with make_suite(suite_name, port=port, planner=planner,
                    env_seed=env_seed) as env:
        # Set environment parameters and initialize environment
        env_params = {
            'weather': weather,
            'start': start,
            'target': target,
            'n_pedestrians': n_pedestrians,
            'n_vehicles': n_vehicles,
        }
        # env.seed = env_seed
        # Initialize environment
        env.init(**env_params)
        # success distance threshold from target
        env.success_dist = 10.0

        image_agent_kwargs['model'] = net
        image_agent = ImageAgent(**image_agent_kwargs)

        coll_actors = None
        route_comp = 0
        red_count = -1
        stop_count = -1

        time_step = 0
        # TODO: just using (https://carlachallenge.org/challenge/) as temp sol
        # i.e. terminating only if critical infraction as defined above
        # also keeping a timeout episode_length
        st_t = time.time()
        while not env.is_success() and not time_step >= episode_length:
            env.tick()
            coll_actors = env.collision_actors
            route_comp = env.route_completed
            red_count = env.red_count
            stop_count = env.stop_count

            # if time_step % 100 == 0:
            #     print('weather {}'.format(weather))
            #     print('time steps so far {}'.format(time_step))
            #     print('route completed so far {}'.format(route_comp))
            #     print('coll actors so far {}'.format(coll_actors))
            #     print('red count so far {}'.format(red_count))
            #     print('stop count so far {}'.format(stop_count))

            observations = env.get_observations()
            control = image_agent.run_step(observations)
            env.apply_control(control)
            time_step += 1

        stop_pen = 0.8**stop_count
        red_pen = 0.7**red_count
        coll_stat_pen = 1.
        coll_veh_pen = 1.
        coll_ped_pen = 1.
        for c in coll_actors:
            if c == TrafficEventType.COLLISION_STATIC:
                coll_stat_pen *= 0.65
            elif c == TrafficEventType.COLLISION_VEHICLE:
                coll_veh_pen *= 0.6
            elif c == TrafficEventType.COLLISION_PEDESTRIAN:
                coll_ped_pen *= 0.5

        # computing driving score of episode
        infraction_pen = stop_pen * red_pen * (coll_stat_pen * coll_veh_pen *
                                               coll_ped_pen)
        score = route_comp * infraction_pen
        end_t = time.time()
        print('========= Episode Stats (Weather {}) ========='.format(weather))
        print('Total time: {}'.format(time_step))
        print('Route Completion Percentage: {}'.format(route_comp))
        print('Collided into: {}'.format(coll_actors))
        print('Number of Red Lights run: {}'.format(red_count))
        print('Number of Stop Signs run: {}'.format(stop_count))
        print('Driving Score: {}'.format(score))
        print('Episode Time (real-time, seconds): {}'.format(end_t - st_t))
        print('=================================')

        # Save weather valuation details to valuation file
        with open(valuation_file_path, 'a+') as file:
            file.write(
                'Indiv:{} Weather:{} Total_time:{} Route_Comp:{} Collisions:{} Red_lights:{} Stop_signs:{} Score:{}'
                ' Ep_time:{} St_t:{} End_t:{} Start-Target_poses:{}\n'.format(
                    indiv_idx, weather, time_step, route_comp, coll_actors,
                    red_count, stop_count, score, end_t - st_t, st_t, end_t,
                    (start, target)))
            file.close()

        rollout_time = (end_t - st_t)
        # env.terminate_criterion_test()
    return score, rollout_time