def test_save_load_model(): """Test saving/loading a fitted model to disk""" X_train, y_train, X_dev, y_dev, label_list = toxic_test_data() model = BertClassifier() model.max_seq_length = 64 model.train_batch_size = 8 model.epochs = 1 model.multilabel = True model.label_list = label_list model.fit(X_train, y_train) accy1 = model.score(X_dev, y_dev) savefile = './test_model_save.bin' print("\nSaving model to ", savefile) model.save(savefile) # load model from disk new_model = load_model(savefile) # predict with new model accy2 = new_model.score(X_dev, y_dev) # clean up print("Cleaning up model file: test_model_save.bin ") os.remove(savefile) assert accy1 == accy2
def test_bert_sklearn_accy(): """ Test bert_sklearn accuracy compare against huggingface run_classifier.py on 200 rows of SST-2 data. """ print("Running bert-sklearn...") X_train, y_train, X_dev, y_dev, label_list = toxic_test_data() # define model model = BertClassifier() model.validation_fraction = 0.0 model.learning_rate = 5e-5 model.gradient_accumulation_steps = 2 model.max_seq_length = 64 model.train_batch_size = 16 model.eval_batch_size = 8 model.epochs = 2 model.multilabel = True # for multi-label classification model.label_list = label_list model.fit(X_train, y_train) bert_sklearn_accy = model.score(X_dev, y_dev) bert_sklearn_accy /= 100 # run huggingface BERT run_classifier and check we get the same accuracy cmd = r"python tests/run_classifier.py --task_name sst-2 \ --data_dir ./tests/data/sst2 \ --do_train --do_eval \ --output_dir ./comptest \ --bert_model bert-base-uncased \ --do_lower_case \ --learning_rate 5e-5 \ --gradient_accumulation_steps 2 \ --max_seq_length 64 \ --train_batch_size 16 \ --eval_batch_size 8 \ --num_train_epochs 2" print("\nRunning huggingface run_classifier.py...\n") os.system(cmd) print("...finished run_classifier.py\n") # parse run_classifier.py output file and find the accy accy = open("comptest/eval_results.txt").read().split("\n")[ 0] # 'acc = 0.76' accy = accy.split("=")[1] accy = float(accy) print("bert_sklearn accy: %.02f, run_classifier.py accy : %0.02f" % (bert_sklearn_accy, accy)) # clean up print("\nCleaning up eval file: eval_results.txt") #os.remove("eval_results.txt") shutil.rmtree("comptest") assert bert_sklearn_accy == accy
def test_not_fitted_exception(): """Test predicting with a model that has not been fitted""" X_train, y_train, X_dev, y_dev, label_list = toxic_test_data() model = BertClassifier() model.max_seq_length = 64 model.train_batch_size = 8 model.epochs = 1 model.multilabel = True model.label_list = label_list # model has not been fitted: model.fit(X_train, y_train) with pytest.raises(Exception): model.score(X_dev, y_dev)