def plot_bestFit_Spectrum(spec, clr, specs, atmfile, filters, kurucz, tepfile, outflux, data, uncert, direct): ''' Plot Transit spectrum ''' # get star data R_star, T_star, sma, gstar = bf.get_starData(tepfile) # get surface gravity grav, Rp = mat.get_g(tepfile) # convert Rp to m Rp = Rp * 1000 # ratio planet to star rprs = Rp / R_star # read kurucz file starfl, starwn, tmodel, gmodel = w.readkurucz(kurucz, T_star, gstar) # read best-fit spectrum output file, take wn and spectra values (head, tail) = os.path.split(outflux) specwn, bestspectrum = rt.readspectrum(direct + '/' + tail, wn=True) # convert wn to wl specwl = 1e4 / specwn # number of filters nfilters = len(filters) # read and resample the filters: nifilter = [] # Normalized interpolated filter istarfl = [] # interpolated stellar flux wnindices = [] # wavenumber indices used in interpolation meanwn = [] # Filter mean wavenumber for i in np.arange(nfilters): # read filter: filtwaven, filttransm = w.readfilter(filters[i]) meanwn.append(np.sum(filtwaven * filttransm) / sum(filttransm)) # resample filter and stellar spectrum: nifilt, strfl, wnind = w.resample(specwn, filtwaven, filttransm, starwn, starfl) nifilter.append(nifilt) istarfl.append(strfl) wnindices.append(wnind) # convert mean wn to mean wl meanwl = 1e4 / np.asarray(meanwn) # band-integrate the flux-ratio or modulation: bandflux = np.zeros(nfilters, dtype='d') bandmod = np.zeros(nfilters, dtype='d') for i in np.arange(nfilters): fluxrat = (bestspectrum[wnindices[i]] / istarfl[i]) * rprs * rprs bandflux[i] = w.bandintegrate(fluxrat, specwn, nifilter[i], wnindices[i]) bandmod[i] = w.bandintegrate(bestspectrum[wnindices[i]], specwn, nifilter[i], wnindices[i]) # stellar spectrum on specwn: sinterp = si.interp1d(starwn, starfl) sflux = sinterp(specwn) frat = bestspectrum / sflux * rprs * rprs ###################### plot figure ############################# plt.rcParams["mathtext.default"] = 'rm' matplotlib.rcParams.update({'mathtext.default': 'rm'}) #matplotlib.rcParams.update({'fontsize': 10,}) matplotlib.rcParams.update({ 'axes.labelsize': 16, #'text.fontsize': 10, 'legend.fontsize': 14, 'xtick.labelsize': 20, 'ytick.labelsize': 20, }) plt.figure(2, (8.5, 5)) plt.clf() #plt.xlim(0.60, 5.5) #plt.xlim(min(specwl),max(specwl)) # plot eclipse spectrum #gfrat = gaussf(frat, 0) plt.semilogx(specwl, frat * 1e3, clr, lw=1.5, label="Spectrum", linewidth=4) #cornflowerblue, lightskyblue #plt.errorbar(meanwl, data*1e3, uncert*1e3, fmt="ko", label="Data", alpha=0.7) plt.errorbar(meanwl, data * 1e3, uncert * 1e3, fmt=".", color='k', zorder=100, capsize=2, capthick=1, label="Data", alpha=0.7) #plt.plot(meanwl, bandflux*1e3, "ko", label="model") plt.ylabel(r"$F_p/F_s$ (10$^{-3}$)", fontsize=24) leg = plt.legend(loc="upper left") #leg.draw_frame(False) leg.get_frame().set_alpha(0.5) ax = plt.subplot(111) ax.set_xscale('log') ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) ax.set_xticks([0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0]) ax.set_xticklabels(["0.7", "", "", "1.0", "2.0", "3.0", "4.0", "5.0"]) plt.xlabel(r"${\rm Wavelength\ \ (um)}$", fontsize=24) nfilters = len(filters) # plot filter bandpasses for i in np.arange(nfilters - 15): (head, tail) = os.path.split(filters[i]) lbl = tail[:-4] # read filter: wn, respons = w.readfilter(filters[i]) respons = respons / 3 - 0.4 wl = 10000.0 / wn #plt.plot(wl, respons, color='crimson', linewidth =1) if lbl == 'spitzer_irac1_sa' or lbl == 'spitzer_irac2_sa': respons = respons * 2 + 0.4 plt.plot(wl, respons, color='grey', linewidth=1, alpha=0.5) #plt.plot(wl, respons*2, color='orangered', linewidth =1) elif lbl == 'Wang-Hband' or lbl == 'Wang-Kband': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) elif lbl == 'VLT_1190' or lbl == 'VLT_2090': plt.plot(wl, respons, color='grey', linewidth=2, alpha=0.5) #plt.plot(wl, respons, color='firebrick', linewidth =2) elif lbl == 'GROND_K_JB' or lbl == 'GROND_i_JB': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) elif lbl == 'Zhou_Ks': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) plt.ylim(-0.4, 7) plt.text(1.9, 3, specs, color=clr, fontsize=26) ###################### INSET PT and ABUN FIGURE #################### b = plt.axes([.21, .45, .14, .24]) # read atmfile molecules, pres, temp, abundances = mat.readatm(atmfile) plt.semilogy(temp, pres, color='r', linewidth=3) plt.xlim(1000, 2200) plt.ylim(max(pres), min(pres)) b.minorticks_off() yticks = [1e2, 1e1, 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5] ylabels = [ "10$^{2}$", "", "10$^{0}$", "", "10$^{-2}$", "", "10$^{-4}$", "" ] plt.yticks(yticks, ylabels, fontsize=8) xticks = [1000, 1200, 1400, 1600, 1800, 2000, 2200] xlabels = ["", "1200", "", "", "1800", ""] plt.xticks(xticks, xlabels, fontsize=12) plt.xlabel('T (K)', fontsize=12) plt.ylabel('P (bar)', fontsize=12) # ############################## SECOND INSET ABUN c = plt.axes([.35, .45, .14, .24]) # Sets the second argument given as the species names species = spec # Open the atmospheric file and read f = open(atmfile, 'r') lines = np.asarray(f.readlines()) f.close() # Get molecules names imol = np.where(lines == "#SPECIES\n")[0][0] + 1 molecules = lines[imol].split() nmol = len(molecules) for m in np.arange(nmol): molecules[m] = molecules[m].partition('_')[0] nspec = 1 # Populate column numbers for requested species and # update list of species if order is not appropriate columns = [] spec = [] for i in np.arange(nmol): if molecules[i] == species: columns.append(i + 3) # defines p, T +2 or rad, p, T +3 spec.append(species) # Convert spec to tuple spec = tuple(spec) # Concatenate spec with pressure for data and columns data = tuple(np.concatenate((['p'], spec))) usecols = tuple(np.concatenate( ([1], columns))) # defines p as 0 columns, or p as 1 columns # Load all data for all interested species data = np.loadtxt(atmfile, dtype=float, comments='#', delimiter=None, \ converters=None, skiprows=13, usecols=usecols, unpack=True) plt.loglog(data[1], data[0], '-', color=clr, \ linewidth=3) plt.ylim(max(pres), min(pres)) c.minorticks_off() yticks = [1e2, 1e1, 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5] ylabels = [] plt.yticks(yticks, ylabels) plt.xlim(1e-12, 1e-2) xticks = [1e-11, 1e-9, 1e-7, 1e-5, 1e-3] xlabels = ["10$^{-11}$", "", "10$^{-5}$", "", "10$^{-3}$"] plt.xticks(xticks, xlabels, fontsize=12) plt.xlabel('Mix. fraction', fontsize=12) plt.subplots_adjust(bottom=0.16) spec = spec[0] print(spec) plt.savefig(spec + "_transSpec_new.png") plt.savefig(spec + "_transSpec_new.ps")
def plot_bestFit_Spectrum(low, high, xtic, xlab, spec, clr, specs, atmfile, filters, kurucz, tepfile, outflux, data, uncert, direct): ''' Plot Transit spectrum ''' # get star data R_star, T_star, sma, gstar = bf.get_starData(tepfile) # get surface gravity grav, Rp = mat.get_g(tepfile) # convert Rp to m Rp = Rp * 1000 # ratio planet to star rprs = Rp / R_star # read kurucz file starfl, starwn, tmodel, gmodel = w.readkurucz(kurucz, T_star, gstar) # read best-fit spectrum output file, take wn and spectra values (head, tail) = os.path.split(outflux) specwn, bestspectrum = rt.readspectrum(direct + '/' + tail, wn=True) # convert wn to wl specwl = 1e4 / specwn # number of filters nfilters = len(filters) # read and resample the filters: nifilter = [] # Normalized interpolated filter istarfl = [] # interpolated stellar flux wnindices = [] # wavenumber indices used in interpolation meanwn = [] # Filter mean wavenumber for i in np.arange(nfilters): # read filter: filtwaven, filttransm = w.readfilter(filters[i]) meanwn.append(np.sum(filtwaven * filttransm) / sum(filttransm)) # resample filter and stellar spectrum: nifilt, strfl, wnind = w.resample(specwn, filtwaven, filttransm, starwn, starfl) nifilter.append(nifilt) istarfl.append(strfl) wnindices.append(wnind) # convert mean wn to mean wl meanwl = 1e4 / np.asarray(meanwn) # band-integrate the flux-ratio or modulation: bandflux = np.zeros(nfilters, dtype='d') bandmod = np.zeros(nfilters, dtype='d') for i in np.arange(nfilters): fluxrat = (bestspectrum[wnindices[i]] / istarfl[i]) * rprs * rprs bandflux[i] = w.bandintegrate(fluxrat, specwn, nifilter[i], wnindices[i]) bandmod[i] = w.bandintegrate(bestspectrum[wnindices[i]], specwn, nifilter[i], wnindices[i]) # stellar spectrum on specwn: sinterp = si.interp1d(starwn, starfl) sflux = sinterp(specwn) frat = bestspectrum / sflux * rprs * rprs ###################### plot figure ############################# plt.rcParams["mathtext.default"] = 'rm' matplotlib.rcParams.update({'mathtext.default': 'rm'}) matplotlib.rcParams.update({ 'axes.labelsize': 16, 'xtick.labelsize': 20, 'ytick.labelsize': 20, }) plt.figure(2, (8.5, 5)) plt.clf() # smooth the spectrum a fit gfrat = gaussf(frat, 2) # plot eclipse spectrum plt.semilogx(specwl, gfrat * 1e3, clr, lw=1.5, label="Spectrum", linewidth=4) plt.errorbar(meanwl, data * 1e3, uncert * 1e3, fmt="ko", label="Data", alpha=0.7) plt.ylabel(r"$F_p/F_s$ (10$^{-3}$)", fontsize=24) leg = plt.legend(loc="upper left") leg.get_frame().set_alpha(0.5) ax = plt.subplot(111) ax.set_xscale('log') plt.xlabel(r"${\rm Wavelength\ \ (um)}$", fontsize=24) ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.gca().xaxis.set_minor_formatter(matplotlib.ticker.NullFormatter()) ax.set_xticks([0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0]) ax.set_xticklabels(["0.7", "", "", "1.0", "2.0", "3.0", "4.0", "5.0"]) plt.xlim(min(specwl), max(specwl)) nfilters = len(filters) # plot filter bandpasses for i in np.arange(nfilters - 15): (head, tail) = os.path.split(filters[i]) lbl = tail[:-4] # read filter: wn, respons = w.readfilter(filters[i]) respons = respons / 3 - 0.4 wl = 10000.0 / wn #plt.plot(wl, respons, color='crimson', linewidth =1) if lbl == 'spitzer_irac1_sa' or lbl == 'spitzer_irac2_sa': respons = respons * 2 + 0.4 plt.plot(wl, respons, color='grey', linewidth=1, alpha=0.5) #plt.plot(wl, respons*2, color='orangered', linewidth =1) elif lbl == 'Wang-Hband' or lbl == 'Wang-Kband': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) elif lbl == 'VLT_1190' or lbl == 'VLT_2090': plt.plot(wl, respons, color='grey', linewidth=2, alpha=0.5) #plt.plot(wl, respons, color='firebrick', linewidth =2) elif lbl == 'GROND_K_JB' or lbl == 'GROND_i_JB': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) elif lbl == 'Zhou_Ks': plt.plot(wl, respons, 'grey', linewidth=1, alpha=0.5) plt.ylim(-0.4, 7) plt.text(1.9, 3, specs, color=clr, fontsize=26) plt.subplots_adjust(bottom=0.20) plt.savefig(spec + "_BestFit-transSpec.png") plt.savefig(spec + "_BestFit-transSpec.ps")
0.000431, 0.000414, 0.000482, 0.00046 , 0.000473, 0.000353, 0.000313, 0.00032 , 0.000394, 0.000439, 0.000458, 0.000595, 0.000614, 0.000732]) uncert = np.array([ 1.30000000e-04, 1.50000000e-04, 8.90000000e-05, 8.40000000e-05, 1.70000000e-04, 2.90000000e-04, 3.20000000e-04, 1.40000000e-04, 4.20000000e-04, 2.20000000e-04, 2.70000000e-04, 4.50000000e-05, 3.90000000e-05, 3.80000000e-05, 3.60000000e-05, 3.70000000e-05, 3.30000000e-05, 3.40000000e-05, 3.00000000e-05, 3.60000000e-05, 3.60000000e-05, 3.30000000e-05, 3.50000000e-05, 3.60000000e-05, 3.70000000e-05, 4.20000000e-05]) # get star data R_star, T_star, sma, gstar = bf.get_starData(tep_name) # get surface gravity grav, Rp = mat.get_g(tep_name) # convert Rp to m Rp = Rp * 1000 # ratio planet to star rprs = Rp/R_star # read kurucz file starfl, starwn, tmodel, gmodel = w.readkurucz(kurucz, T_star, gstar) ###################### plot figure ############################# plt.rcParams["mathtext.default"] = 'rm' matplotlib.rcParams.update({'mathtext.default':'rm'}) matplotlib.rcParams.update({'axes.labelsize': 16, 'xtick.labelsize': 14,
def retrievedPT(datadir, atmfile, tepfile, nmol, solution, outname, outdir=None, T_int=100.): """ Inputs ------ datadir: string. Path/to/directory containing BART-formatted output. atmfile: string. Path/to/atmospheric model file. tepfile: string. Path/to/Transiting ExoPlanet file. nmol: int. Number of molecules being fit by MCMC. solution: string. Geometry of the system. 'eclipse' or 'transit'. outname: string. File name of resulting plot. outdir: string. Path/to/dir to save `outname`. If None, defaults to the results directory of BARTTest if `datadir` is within BARTTest. T_int: float. Internal planetary temperature. Default is 100 K. """ # Set outdir if not specified if outdir is None: try: if datadir[-1] != '/': datadir = datadir + '/' outdir = 'results'.join(datadir.rsplit('code-output', \ 1)).rsplit('/', 2)[0] + '/' if not os.path.isdir(outdir): os.makedirs(outdir) except: print("Data directory not located within BARTTest.") print("Please specify an output directory `outdir` and try again.") sys.exit(1) # Read g_surf and R_planet from TEP file grav, Rp = ma.get_g(tepfile) # Read star data from TEP file, and semi-major axis R_star, T_star, sma, gstar = bf.get_starData(tepfile) # Read atmfile mols, atminfo = readatm(atmfile) pressure = atminfo[:, 1] # Read MCMC output file MCfile = datadir + 'MCMC.log' bestP, uncer = bf.read_MCMC_out(MCfile) allParams = bestP # Get number of burned iterations foo = open(MCfile, 'r') lines = foo.readlines() foo.close() line = [ foop for foop in lines if " Burned in iterations per chain:" in foop ] burnin = int(line[0].split()[-1]) # Figure out number of parameters nparams = len(allParams) nradfit = int(solution == 'transit') nPTparams = nparams - nmol - nradfit PTparams = allParams[:nPTparams] # Plot the best PT profile kappa, gamma1, gamma2, alpha, beta = PTparams best_T = pt.PT_line(pressure, kappa, gamma1, gamma2, alpha, beta, R_star, T_star, T_int, sma, grav * 1e2, 'const') # Load MCMC data MCMCdata = datadir + 'output.npy' data = np.load(MCMCdata) nchains, npars, niter = np.shape(data) # Make datacube from MCMC data data_stack = data[0, :, burnin:] for c in np.arange(1, nchains): data_stack = np.hstack((data_stack, data[c, :, burnin:])) # Datacube of PT profiles PTprofiles = np.zeros((np.shape(data_stack)[1], len(pressure))) curr_PTparams = PTparams for k in np.arange(0, np.shape(data_stack)[1]): j = 0 for i in np.arange(len(PTparams)): curr_PTparams[i] = data_stack[j, k] j += 1 kappa, gamma1, gamma2, alpha, beta = curr_PTparams PTprofiles[k] = pt.PT_line(pressure, kappa, gamma1, gamma2, alpha, beta, R_star, T_star, T_int, sma, grav * 1e2, 'const') # Get percentiles (for 1, 2-sigma boundaries): low1 = np.percentile(PTprofiles, 16.0, axis=0) hi1 = np.percentile(PTprofiles, 84.0, axis=0) low2 = np.percentile(PTprofiles, 2.5, axis=0) hi2 = np.percentile(PTprofiles, 97.5, axis=0) median = np.median(PTprofiles, axis=0) # Plot and save figure plt.figure(2) plt.clf() ax = plt.subplot(111) ax.fill_betweenx(pressure, low2, hi2, facecolor="#62B1FF", edgecolor="0.5") ax.fill_betweenx(pressure, low1, hi1, facecolor="#1873CC", edgecolor="#1873CC") plt.semilogy(median, pressure, "-", lw=2, label='Median', color="k") plt.semilogy(best_T, pressure, "-", lw=2, label="Best fit", color="r") plt.semilogy(atminfo[:, 2], pressure, "--", lw=2, label='Input', color='r') plt.ylim(pressure[0], pressure[-1]) plt.legend(loc="best") plt.xlabel("Temperature (K)", size=15) plt.ylabel("Pressure (bar)", size=15) plt.savefig(outdir + outname) plt.close()