Example #1
0
def test_zoom():
    s = AnatomicalSpace("asl", resolution=(1, 1, 1))
    t = AnatomicalSpace("asl", resolution=(1, 1, 2))

    m = np.array(
        [
            [[1, 9, 15, 17, 20, 25], [1, 9, 15, 17, 20, 25]],
            [[2, 18, 30, 34, 40, 50], [2, 18, 30, 34, 40, 50]],
        ]
    ).astype(np.float)

    assert np.allclose(
        s.map_stack_to(t, m),
        np.array(
            [
                [[1.0, 16.20454545, 25.0], [1.0, 16.20454545, 25.0]],
                [[2.0, 32.40909091, 50.0], [2.0, 32.40909091, 50.0]],
            ]
        ),
    )

    assert np.allclose(
        s.map_stack_to(t, m, interp_order=1),
        np.array(
            [
                [[1.0, 16.0, 25.0], [1.0, 16.0, 25.0]],
                [[2.0, 32.0, 50.0], [2.0, 32.0, 50.0]],
            ]
        ),
    )
Example #2
0
def test_stack_copy(copy_flag):
    source_stack = np.random.rand(3, 4, 2)
    source_space = AnatomicalSpace("asl")
    pre_copy = source_stack.copy()

    mapped_stack = source_space.map_stack_to(
        "lsp", source_stack, copy=copy_flag
    )

    mapped_stack[0, 1, 1] = 1

    assert np.allclose(source_stack, pre_copy) == copy_flag
Example #3
0
def test_stack_flips(src_o, tgt_o, src_shape, tgt_shape):
    source_stack = create_label_array(src_o, src_shape)
    target_stack = create_label_array(tgt_o, tgt_shape)

    source_space = AnatomicalSpace(src_o)

    # Test both mapping to AnatomicalSpace obj and origin with decorator:
    for target_space in [tgt_o, AnatomicalSpace(tgt_o)]:
        # Check all corners of the mapped stack:
        mapped_stack = source_space.map_stack_to(target_space, source_stack)
        for indexes in itertools.product([0, -1], repeat=3):
            assert set(mapped_stack[indexes]) == set(target_stack[indexes])
Example #4
0
def test_point_transform(src_o, tgt_o, src_shape, tgt_shape):
    # Create an array with descriptive space labels:
    source_stack = create_label_array(src_o, src_shape)

    # Create spaces objects:
    source_space = AnatomicalSpace(src_o, shape=[s * 2 for s in src_shape])

    # Test both mapping to AnatomicalSpace obj and origin with decorator:
    for target_space in [tgt_o, AnatomicalSpace(tgt_o)]:

        # Define grid of points sampling 4 points per axis:
        grid_positions = [[1, s - 1, s + 1, s * 2 - 1] for s in src_shape]
        source_pts = np.array(list(itertools.product(*grid_positions)))

        # Map points and stack to target space:
        mapped_pts = source_space.map_points_to(target_space, source_pts)
        mapped_stack = source_space.map_stack_to(target_space, source_stack)

        # Check that point coordinates keep the same values:
        for p_source, p_mapped in zip(source_pts, mapped_pts):
            p_s, p_m = [tuple(p.astype(np.int)) for p in [p_source, p_mapped]]

            assert source_stack[p_s] == mapped_stack[p_m]
Example #5
0
def test_stack_map_offset(s_dict, t_dict, f_in, result):
    s = AnatomicalSpace(**s_dict)
    t = AnatomicalSpace(**t_dict)

    assert np.allclose(t.map_stack_to(s, np.ones((2, 2, 2)), **f_in), result)
Example #6
0
    )


# 1. load the data
print("Loading data")
data = imio.load.load_any(datafile)

# 2. aligned the data to the scene's atlas' axes
print("Transforming data")
scene = Scene(atlas_name="mpin_zfish_1um")

source_space = AnatomicalSpace(
    "ira"
)  # for more info: https://docs.brainglobe.info/bg-space/usage
target_space = scene.atlas.space
transformed_stack = source_space.map_stack_to(target_space, data)

# 3. create a Volume vedo actor and smooth
print("Creating volume")
vol = Volume(transformed_stack, origin=scene.root.origin()).medianSmooth()


# 4. Extract a surface mesh from the volume actor
print("Extracting surface")
SHIFT = [-20, 15, 30]  # fine tune mesh position
mesh = (
    vol.isosurface(threshold=20).c(blue_grey).decimate().clean().addPos(*SHIFT)
)

# 5. render
print("Rendering")