# Get the filterid filter. f.read(filter_file, path='/%s/%s' % (filterid, ccd)) # For each defined redshift, eval the photometry and store on the database. db_m = db.get('/%s/%s/%s' % (filterid, ccd, 'library')) i_z = 0 for z in np.arange(z_from, z_to, z_step): if z == 0: d_L = 3.08567758e19 # 10 parsec in cm else: d_L = cosmocalc.cosmocalc(z)['DL_cm'] k_cosmo = L_sun / ( 4 * np.pi * np.power(d_L,2) ) O = zcor(obs_spec, z) O['flux'] = O['flux'] * k_cosmo x = spec2filterset(f.filterset, O, dlambda_eff = 3.0) # print 'z', z # print aux0[i_base] # # plt.figure(1) # plt.clf() # plt.plot(O['wl'][kk], O['flux'][kk]) # plt.figure(2) # plt.clf() # plt.plot(f.filteravgwls, x, '.')
# Get the filterid filter. f.read(filter_file, path='/%s/%s' % (filterid, ccd)) # For each defined redshift, eval the photometry and store on the database. db_m = db.get('/%s/%s/%s' % (filterid, ccd, 'library')) i_z = 0 for z in np.arange(z_from, z_to, z_step): if z == 0: d_L = 3.08567758e19 # 10 parsec in cm else: d_L = cosmocalc.cosmocalc(z)['DL_cm'] k_cosmo = L_sun / ( 4 * np.pi * np.power(d_L,2) ) O = zcor(obs_spec, z) O['flux'] = O['flux'] * k_cosmo O['error'] = O['error'] * k_cosmo M = zcor(model_spec, z) M['flux'] = M['flux'] * k_cosmo x = spec2filterset(f.filterset, O, M, dlambda_eff = 3.0) db_m[i_z, i_file] = x i_z = i_z + 1 db.close() log.debug('Took %3.2f seconds.' % (time.time() - t_start))