Example #1
0
def scf_density_grid_fast(x,
                          y,
                          z,
                          Smw,
                          Tmw,
                          Slmc,
                          Tlmc,
                          nbins,
                          rs_mw,
                          rs_lmc,
                          lmc_com,
                          quantity,
                          G=1):

    q_all = np.zeros((nbins, nbins, nbins))
    xyz_lmc = np.array([x - lmc_com[0], y - lmc_com[1], z - lmc_com[2]]).T
    xyz = np.array([x, y, z]).T
    print(len(xyz_lmc[:, 0]))
    print(xyz_lmc[:, 0])
    if quantity == "density":
        q_all = biff.density(np.ascontiguousarray(xyz_lmc), Slmc, Tlmc, M=1, r_s=rs_lmc) \
                + biff.density(np.ascontiguousarray(xyz), Smw, Tmw, M=1, r_s=rs_mw)

    if quantity == "potential":
        q_all = biff.potential(np.ascontiguousarray(xyz_lmc), Slmc, Tlmc, M=1, r_s=rs_lmc, G=G) \
                + biff.potential(np.ascontiguousarray(xyz), Smw, Tmw, M=1, r_s=rs_mw, G=G)

    if quantity == "acceleration":
        almc = biff.gradient(xyz_lmc, Slmc, Tlmc, M=1, r_s=rs_lmc, G=G)
        amw = biff.gradient(xyz, Smw, Tmw, M=1, r_s=rs_mw, G=G)
        q_all = np.sqrt(np.sum(almc**2, axis=1)) + np.sqrt(
            np.sum(amw**2, axis=1))

    return q_all
Example #2
0
def combine_bfe_rho(S1, T1, S2, T2, y_grid, z_grid, lmc_com, nbins):
    rho_mwlmc = np.zeros((nbins, nbins))
    for i in range(nbins):
        for j in range(nbins):
            rho_mwlmc[i][j] = biff.density(np.array([[0-lmc_com[0]],
                                           [y_grid[0][i]-lmc_com[1]],
                                           [z_grid[j,0]-lmc_com[2]]]).T,
                                           S2, T2, M=1,r_s=10) + \
                              biff.density(np.array([[0], [y_grid[0][i]], [z_grid[j,0]]]).T,
                                           S1, T1, M=1, r_s=40.85)
    
    return rho_mwlmc
Example #3
0
    def _ln_potential_prior(self, pars):
        lp = 0.
        lp += -(pars['Snlm']**2).sum()

        grad = biff.gradient(self._xyz,
                             Snlm=pars['Snlm'],
                             Tnlm=pars['Tnlm'],
                             nmax=self.nmax,
                             lmax=0,
                             G=_G,
                             M=pars['m'],
                             r_s=pars['r_s'])
        if np.any(grad < 0.):
            return -np.inf

        dens = biff.density(self._xyz,
                            Snlm=pars['Snlm'],
                            Tnlm=pars['Tnlm'],
                            nmax=self.nmax,
                            lmax=0,
                            M=pars['m'],
                            r_s=pars['r_s'])
        if np.any(dens < 0.):
            return -np.inf

        return lp
Example #4
0
def scf_density_grid(x,
                     y,
                     z,
                     Smw,
                     Tmw,
                     Slmc,
                     Tlmc,
                     nbins,
                     rs_mw,
                     rs_lmc,
                     lmc_com,
                     quantity,
                     G=1):

    q_all = np.zeros((nbins, nbins, nbins))
    for i in range(nbins):
        for j in range(nbins):
            for k in range(nbins):
                # These line is flipping x with y!
                xyz_lmc = np.array([[x[0, i, 0] - lmc_com[0]],
                                    [y[j, 0, 0] - lmc_com[1]],
                                    [z[0, 0, k] - lmc_com[2]]]).T
                xyz = np.array([[x[0, i, 0]], [y[j, 0, 0]], [z[0, 0, k]]]).T

                if quantity == "density":
                    q_all[i][j][k] = \
                        biff.density(xyz_lmc, Slmc, Tlmc, M=1, r_s=rs_lmc) \
                        + biff.density(xyz, Smw, Tmw, M=1, r_s=rs_mw)

                if quantity == "potential":
                    q_all[i][j][k] = \
                        biff.potential(np.ascontiguousarray(xyz_lmc), Slmc, Tlmc, M=1, r_s=rs_lmc,
                                G=G) \
                        + biff.potential(np.ascontiguousarray(xyz), Smw, Tmw, M=1, r_s=rs_mw, G=G)

                if quantity == "acceleration":
                    almc = biff.gradient(xyz_lmc,
                                         Slmc,
                                         Tlmc,
                                         M=1,
                                         r_s=rs_lmc,
                                         G=G)
                    amw = biff.gradient(xyz, Smw, Tmw, M=1, r_s=rs_mw, G=G)
                    q_all[i][j][k] = np.sqrt(np.sum(almc**2)) \
                        + np.sqrt(np.sum(amw**2))

    return q_all.flatten()
Example #5
0
def relative_rho(S, T, SS, TT, ST, figname, title_name):
    sn = [0, 1, 2, 3, 4, 5]
    fig = figure(figsize=(10, 14))
    for i in range(len(sn)):
        S_smooth, T_smooth, N_smooth = coefficients_smoothing.smooth_coeff_matrix(
            S, T, SS, TT, ST, mass, 20, 20, 20, sn[i])
        rho_biff = biff.density(np.ascontiguousarray(xyz),
                                S_smooth,
                                T_smooth,
                                M=1,
                                r_s=40.85)
        print(S_smooth[0, 0, 0])
        rho_biff_0 = biff.density(np.ascontiguousarray(xyz),
                                  np.array([[[S_smooth[0, 0, 0]], [0],
                                             [0]]]).T,
                                  np.array([[[T_smooth[0, 0, 0]], [0],
                                             [0]]]).T,
                                  M=1,
                                  r_s=40.85)
        subplot(3, 2, i + 1)
        #levels = np.arange(-14, -2.4, 0.5)
        im = contourf(y_grid,
                      z_grid,
                      ((rho_biff / rho_biff_0) - 1).reshape(bins, bins),
                      30,
                      origin='lower',
                      cmap='Spectral_r')

        text(-180, 160, 'Ncoeff={}'.format(N_smooth), color='k')
        text(-180, 130, 'S/N={}'.format(sn[i]), color='k')

        xlim(-200, 200)
        ylim(-200, 200)
        if ((i == 4) | (i == 5)):
            xlabel('y[kpc]')
        if (i + 1) % 2 == 1:
            ylabel('z[kpc]')

    cb_ax = fig.add_axes([0.93, 0.1, 0.02, 0.8])
    cbar = colorbar(im, cax=cb_ax)
    fig.suptitle(
        'Relative density of MW + LMC unbound particles {}'.format(title_name),
        y=0.93)
    cbar.set_label(r'$\Delta \rho$')
    savefig(figname + '.pdf', bbox_inches='tight')
    savefig(figname + '.png', bbox_inches='tight')
    def rho_bfe_all(self, S, T, S_mw, T_mw, S_mw_wake, T_mw_wake, S_lmc, T_lmc,
                    S_mwlmc, T_mwlmc):
        xyz, xyz_shift = self.grid_cartessian()
        # Monopole
        rho_ref = biff.density(xyz, S_mw_ref, T_mw_ref, M=1, r_s=self.rs)
        rho_wake = biff.density(xyz, S_mw, T_mw, M=1, r_s=self.rs)
        rho_mwwake = biff.density(xyz, S_mw_wake, T_mw_wake, M=1, r_s=self.rs)
        rho_lmcshift = biff.density(xyz_shift,
                                    S_lmc,
                                    T_lmc,
                                    M=1,
                                    r_s=self.rs_sat)
        #rho_lmcshift = biff.density(xyz, S_lmc, T_lmc, M=1, r_s=self.rs_sat)

        # MW + Debris
        rho_mwlmc = biff.density(xyz, S_mwlmc, T_mwlmc, M=1, r_s=self.rs)
        return rho_ref, rho_mwwake, rho_wake, rho_lmcshift, rho_mwlmc
Example #7
0
def scf_density(x_grid, y_grid, z_grid, S, T, r_s_mw):
    xyz = np.ascontiguousarray(
        np.double(
            np.array([x_grid.flatten(),
                      y_grid.flatten(),
                      z_grid.flatten()]).T))

    dens_ratio_all = biff.density(xyz, S, T, M=1, r_s=r_s_mw)

    return dens_ratio_all
Example #8
0
    def _ln_potential_prior(self, pars):
        lp = 0.
        lp += -(pars['Snlm']**2).sum()

        grad = biff.gradient(self._xyz, Snlm=pars['Snlm'], Tnlm=pars['Tnlm'],
                             nmax=self.nmax, lmax=0, G=_G, M=pars['m'], r_s=pars['r_s'])
        if np.any(grad < 0.):
            return -np.inf

        dens = biff.density(self._xyz, Snlm=pars['Snlm'], Tnlm=pars['Tnlm'],
                            nmax=self.nmax, lmax=0, M=pars['m'], r_s=pars['r_s'])
        if np.any(dens < 0.):
            return -np.inf

        return lp
def BFE_density(Snlm, Tnlm, true_M, true_r_s, xmin, xmax, ymin, ymax, nbinsx,
                nbinsy, z_plane, **kwargs):
    """
    Computes the density profile of the BFE
    """
    y_bins = np.linspace(xmin, xmax, nbinsx)
    z_bins = np.linspace(ymin, ymax, nbinsy)
    y, z = np.meshgrid(y_bins, z_bins)

    pos = np.array(
        [np.ones(len(y.flatten())) * z_plane,
         y.flatten(),
         z.flatten()]).T

    rho_bfe = biff.density(np.ascontiguousarray(pos.astype(np.double)), Snlm,
                           Tnlm, true_M, true_r_s)

    if 'S2' in kwargs.keys():
        S2 = kwargs['S2']
        T2 = kwargs['T2']
        M2 = kwargs['M2']
        r_s2 = kwargs['r_s2']
        ylmc = kwargs['ylmc']
        zlmc = kwargs['zlmc']
        print(ylmc, zlmc)
        y_bins2 = np.linspace(ylmc - xmin, ylmc - xmax, nbinsx)
        z_bins2 = np.linspace(zlmc - ymin, zlmc - ymax, nbinsy)
        y2, z2 = np.meshgrid(y_bins2, z_bins2)
        pos2 = np.array(
            [np.ones(len(y2.flatten())) * z_plane,
             y2.flatten(),
             z2.flatten()]).T
        rho_bfe2 = biff.density(np.ascontiguousarray(pos2.astype(np.double)),
                                S2, T2, M2, r_s2)

    return rho_bfe, rho_bfe2
def BFE_density_profile(pos, Snlm, Tnlm, true_M, true_r_s, rmax, nbins=20):
    """
    Computes the density profile of the BFE

    """

    #r = np.logspace(-2, rmax, 512)
    #pos = np.zeros((len(r), 3))
    #pos[:,0] = r
    rho_bfe = biff.density(np.ascontiguousarray(pos.astype(np.double)), Snlm,
                           Tnlm, true_M, true_r_s)

    r = (pos[:, 0]**2 + pos[:, 1]**2 + pos[:, 2]**2)**0.5
    r_bins = np.linspace(0.01, rmax, nbins)
    rho_bins = np.zeros(len(r_bins))
    for i in range(len(rho_bins) - 1):
        index_c = np.where((r < r_bins[i + 1]) & (r >= r_bins[i]))[0]
        rho_bins[i] = np.mean(rho_bfe[index_c])
    dr = (r_bins[1] - r_bins[0]) / 2.
    return r_bins + dr, rho_bins
Example #11
0
def rho_plots(S, T, SS, TT, ST, figname, cbar_name):
    sn = [0, 1, 2, 3, 4, 5]
    fig = plt.figure(figsize=(10, 14))
    for i in range(len(sn)):
        S_smooth, T_smooth, N_smooth = coefficients_smoothing.smooth_coeff_matrix(
            S, T, SS, TT, ST, mass, 20, 20, 20, sn[i])
        rho_biff = biff.density(np.ascontiguousarray(xyz),
                                S_smooth,
                                T_smooth,
                                M=1,
                                r_s=40.85)
        plt.subplot(3, 2, i + 1)
        #levels = np.arange(-14, -2.4, 0.5)
        im = plt.contourf(
            y_grid,
            z_grid,
            np.log10(np.abs(rho_biff).reshape(bins, bins)),
            40,
            origin='lower',
            cmap='Spectral_r',
        )

        plt.text(-180, 160, 'Ncoeff={}'.format(N_smooth), color='k')
        plt.text(-180, 130, 'S/N={}'.format(sn[i]), color='k')

        plt.xlim(-200, 200)
        plt.ylim(-200, 200)
        if ((i == 4) | (i == 5)):
            plt.xlabel('y[kpc]')
        if (i + 1) % 2 == 1:
            plt.ylabel('z[kpc]')
    cb_ax = fig.add_axes([0.93, 0.1, 0.02, 0.8])
    cbar = plt.colorbar(im, cax=cb_ax)
    fig.suptitle('Density of MW + LMC unbound particles {}'.format(cbar_name),
                 y=0.93)
    cbar.set_label(r'$\rm{Log_{10}} \rho$')
    plt.savefig(figname + '.pdf', bbox_inches='tight')
    plt.savefig(figname + '.png', bbox_inches='tight')
    return 0
Example #12
0
def kpq_sn_estimator(i):
    pos = np.loadtxt('./MW_100M_b1_dm_part_1e6_300.txt')

    N_particles = len(pos)
    n_batches = 100
    particles_in_batch = int(N_particles / n_batches)

    sn_range = np.arange(0, 11, 0.2)
    Hp = np.zeros(len(sn_range))
    Kpq = np.zeros(len(sn_range))
    Kpq_rho = np.zeros(len(sn_range))
    N_part = 990000  # len(pos_grid)
    m_p = 1 / N_part
    rho_factor = 1e4 / N_part
    m_p_sim = 1E-4
    N_coeff = np.zeros(len(sn_range))

    path = '/home/xzk/work/github/MW-LMC-SCF/code/data_KL_SN/'
    S, T = coefficients_smoothing.read_coeff_matrix(
        path + 'mwlmc_hal_sn_test_coeff_sample_',
        i + 1,
        20,
        20,
        20,
        0,
        i + 1,
        snaps=1)
    SS, TT, ST = coefficients_smoothing.read_cov_elements(
        path + 'mwlmc_hal_sn_test_covmat_sample_',
        i + 1,
        20,
        20,
        20,
        0,
        i + 1,
        snaps=1)
    S_0, T_0, N_smooth_0 = coefficients_smoothing.smooth_coeff_matrix(
        S, T, SS, TT, ST, m_p_sim, 20, 20, 20, 0)  # sn
    xyz1 = np.array([
        pos[:i * (particles_in_batch), 0], pos[:i * (particles_in_batch), 1],
        pos[:i * (particles_in_batch), 2]
    ]).T

    xyz2 = np.array([
        pos[(i + 1) * (particles_in_batch):,
            0], pos[(i + 1) * (particles_in_batch):, 1],
        pos[(i + 1) * (particles_in_batch):, 2]
    ]).T

    xyz = np.concatenate((xyz1, xyz2))
    assert (len(xyz == 990000))
    rho_reference = biff.density(np.ascontiguousarray(xyz.astype(float)),
                                 S_0,
                                 T_0,
                                 M=1,
                                 r_s=40.85)
    print('Here')
    """
    for sn in range(len(sn_range)):

        S_smooth, T_smooth, N_coeff[sn] = coefficients_smoothing.smooth_coeff_matrix(S, T, SS, TT, ST, m_p_sim, 20, 20, 20, sn_range[sn])


        rho_estimate = biff.density(np.ascontiguousarray(xyz.astype(float)), S_smooth, T_smooth, M=1, r_s=40.85) 
        Hp[sn] = np.sum(m_p*np.log(rho_factor*np.abs(rho_estimate))) 
        Kpq[sn] = np.sum(m_p*np.log(rho_factor*np.abs(rho_reference))) - Hp[sn]
        Kpq_rho[sn] = np.sum(rho_factor*rho_reference*np.log(np.abs(rho_reference/rho_estimate))) 

    """
    return Hp, Kpq, Kpq_rho, N_coeff