Example #1
0
    # List of Columns
    p = "\nS-BOX  "
    for i in range(16):
        p += "%02x" % i + "  "
    p += "\n"

    for i in range(70):
        p += "-"
    p += "\n"

    # Row
    for i in range(16):
        p += "%02x" % i + "  |  "

        # Entries
        for j in range(16):
            p += "%02x" % sbox[16 * i + j] + "  "
        p += "\n"

    return p.upper()


if __name__ == "__main__":
    print("Initial Sbox is : ")
    print(pretty(gen()))

    print("Is initial Sbox bijective:", is_bijective(gen()))

    print("Nonlinearity of  Initial Sbox:", value_nonl(gen()))
Example #2
0
        The vertex to which we need minimum cost.
    """
    cost_path = 0
    for node in range(len(set_Vertices)-1):
        cost_path += dist(graph, set_Vertices[node], set_Vertices[node+1])
    return cost_path


if __name__ == '__main__':
    graphs = []
    initial_non = value_nonl(gen())
    # dict conatining sbox
    non_sbox = {initial_non: gen()}
    all_perms = list(per(range(8)))
    array = gen()
    if is_bijective(array):
        for var in range(10):
            array_mod = []
            for num in range(32):
                array_mod, graph = substitution(
                    all_perms, array, array_mod, num)
                graphs.append(graph)
            # calculate non-linearity of modified Sbox
            nn_array_mod = value_nonl(array_mod)
            if nn_array_mod > limit1:
                non_sbox[nn_array_mod] = [array_mod, graphs]
            print(var, value_nonl(array), nn_array_mod)
    else:
        print('Is not bijective!')
    if max(non_sbox) > limit:
        with open('data/part-1/'+getfilename(), 'a') as f: