bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=1.5) loss_func = F.cross_entropy learner = Learner(model, opt, loss_func, data, metrics=[accuracy], callbacks=EarlyStopping(patience=3)) learner.fit(10) learner.test(test_dl) pred = learner.predict(x_valid) print(pred.size()) learner.recorder.plot_loss() learner.recorder.plot_metrics() plt.show() # # 1. ------ 数据 # x_train, y_train, x_valid, y_valid = mnist_data()
for gcn in self.gcns: x = gcn(x, edge_index) x = F.relu(x) x, _, _, batch, _, _ = self.graph_pooling(x, edge_index, None, batch) x = global_max_pool(x, batch) outputs = self.dense(x) outputs = F.relu(outputs) outputs = self.out(outputs) return outputs model = Model(dataset.item_num, 2) opt = optim.SGD(model.parameters(), lr=0.5) # 3. learner learner = Learner(model, opt, F.cross_entropy, train_db, metrics=[accuracy]) # 4. fit learner.fit(3) # 5. test learner.test(test_dl) # 6. predict pred = learner.predict(test_dl) print(pred.size()) # 7. plot learner.recorder.plot_metrics() plt.show()
from bijou.metrics import accuracy from bijou.learner import Learner from bijou.data import Dataset, DataLoader, DataBunch import torch.nn as nn import torch.nn.functional as F from torch import optim from bijou.datasets import mnist import matplotlib.pyplot as plt x_train, y_train, x_valid, y_valid, x_test, y_test = mnist() train_ds, valid_ds, test_ds = Dataset(x_train, y_train), Dataset( x_valid, y_valid), Dataset(x_test, y_test) bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) learner = Learner(model, opt, F.cross_entropy, data, metrics=[accuracy]) learner.fit_one_cycle(5, high_lr=0.35) learner.recorder.plot() plt.show()
def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = self.conv2(x, edge_index) outputs = F.relu(x) return outputs model = Model(dataset.num_node_features, dataset.num_classes) opt = optim.SGD(model.parameters(), lr=0.5, weight_decay=0.01) learner = Learner(model, opt, masked_cross_entropy, data, metrics=[masked_accuracy], callbacks=PyGGraphInterpreter) learner.fit(100) learner.test(test_dl) learner.predict(test_dl) def loss_noreduction(pred, target): return F.cross_entropy(pred[target.mask], target.data[target.mask], reduction='none') scores, xs, ys, preds, indecies = learner.interpreter.top_data(
bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) loss_func = F.cross_entropy learner = Learner(model, opt, loss_func, data, metrics=[accuracy], callbacks=Interpreter()) learner.fit(3) learner.test(test_dl) def loss_noreduction(pred, target): return F.cross_entropy(pred, target, reduction='none') scores, xs, ys, preds, indecies = learner.interpreter.top_data( metric=loss_noreduction, k=10, phase='train', largest=True) print(scores) print(indecies)
train_ds, valid_ds, test_ds = Dataset(x_train, y_train), Dataset(x_valid, y_valid), Dataset(x_test, y_test) bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) loss_func = F.cross_entropy learner = Learner(model, opt, loss_func, data, metrics=[accuracy], callbacks=GradientClipping(0.001)) learner.fit(3) learner.test(test_dl) pred = learner.predict(x_valid) print(pred.size()) learner.recorder.plot_loss() learner.recorder.plot_metrics() plt.show() # import sys # sys.path.append('..')
self.conv2 = GCNConv(16, class_num) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = self.conv2(x, edge_index) outputs = F.relu(x) return outputs model = Model(dataset.num_node_features, dataset.num_classes) opt = optim.SGD(model.parameters(), lr=0.5, weight_decay=0.01) # 3. learner learner = Learner(model, opt, masked_cross_entropy, data, metrics=[masked_accuracy]) # 4. fit learner.fit(100) # 5. test learner.test(test_data) # 6. predict pred = learner.predict(dataset[0]) print(pred.size()) # 7. plot learner.recorder.plot_metrics() plt.show()
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.gcn1 = GCN(1433, 16, F.relu) self.gcn2 = GCN(16, 7, None) def forward(self, g, features): x = self.gcn1(g, features) x = self.gcn2(g, x) return x net = Net() optimizer = th.optim.Adam(net.parameters(), lr=1e-3) # 3. learner learner = Learner(net, optimizer, masked_cross_entropy, data, metrics=masked_accuracy) # 4. fit learner.fit(50) # 5. test learner.test(test_dl) # 6. predict learner.predict(test_dl) # 7. plot learner.recorder.plot_metrics() plt.show()
x = F.relu(x) x, _, _, batch, _, _ = self.graph_pooling(x, edge_index, None, batch) x = global_max_pool(x, batch) outputs = self.dense(x) outputs = F.relu(outputs) outputs = self.out(outputs) return outputs model = Model(dataset.item_num, 2) opt = optim.SGD(model.parameters(), lr=0.5) # 3. learner learner = Learner(model, opt, F.cross_entropy, train_db, metrics=[accuracy], callbacks=PyGGraphInterpreter()) # 4. fit learner.fit(3) # 5. test learner.test(test_dl) loss = nn.CrossEntropyLoss(reduction='none') scores, xs, ys, preds, indecies = learner.interpreter.top_data(loss, k=10, target='train', largest=True)
import matplotlib.pyplot as plt x_train, y_train, x_valid, y_valid, x_test, y_test = mnist() train_ds, valid_ds, test_ds = Dataset(x_train, y_train), Dataset( x_valid, y_valid), Dataset(x_test, y_test) bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) # train_dl, valid_dl, test_dl = DataLoader.loaders(train_ds, valid_ds, test_ds, 128) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) loss_func = F.cross_entropy learner = Learner(model, opt, loss_func, data, metrics=[accuracy]) learner.fit(3) learner.test(test_dl) pred = learner.predict(x_valid) print(pred.size()) learner.recorder.plot_loss() learner.recorder.plot_metrics() plt.show()
def __init__(self): super(Net, self).__init__() self.gcn1 = GCN(1433, 16, F.relu) self.gcn2 = GCN(16, 7, None) def forward(self, g, features): x = self.gcn1(g, features) x = self.gcn2(g, x) return x net = Net() optimizer = th.optim.Adam(net.parameters(), lr=1e-3) # 3. learner learner = Learner(net, optimizer, masked_cross_entropy, data, metrics=masked_accuracy, callbacks=DGLGraphInterpreter) # 4. fit learner.fit(50) # 5. test learner.test(test_dl) def loss_noreduction(pred, target): return F.cross_entropy(pred[target.mask], target.data[target.mask], reduction='none') scores, xs, ys, preds, indecies = learner.interpreter.top_data(loss_noreduction, k=10, phase='train', largest=True) learner.interpreter.plot_confusion(phase='train') learner.interpreter.plot_confusion(phase='val')
h = g.in_degrees().view(-1, 1).float() for conv in self.layers: h = conv(g, h) g.ndata['h'] = h hg = dgl.mean_nodes(g, 'h') return self.classify(hg) model = Classifier(1, 256, train_ds.num_classes) optimizer = optim.Adam(model.parameters(), lr=0.001) # 3. learne loss_func = nn.CrossEntropyLoss() learner = Learner(model, optimizer, loss_func, data, metrics=accuracy, callbacks=DGLInterpreter) # 4. fit learner.fit(80) # 5. test learner.test(test_dl) loss = nn.CrossEntropyLoss(reduction='none') scores, xs, ys, preds, indecies = learner.interpreter.top_data(loss, k=10, phase='train', largest=True)
import torch.nn.functional as F import torch.nn as nn from torch import optim import matplotlib.pyplot as plt from bijou.learner import Learner from bijou.data import Dataset, DataLoader, DataBunch from bijou.datasets import mnist x_train, y_train, x_valid, y_valid, x_test, y_test = mnist() train_ds, valid_ds, test_ds = Dataset(x_train, y_train), Dataset( x_valid, y_valid), Dataset(x_test, y_test) bs = 128 train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) loss_func = F.cross_entropy learner = Learner(model, opt, loss_func, data) learner.find_lr(max_iter=100) plt.show()
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=bs) test_dl = DataLoader(test_ds, batch_size=bs) data = DataBunch(train_dl, valid_dl) in_dim = data.train_ds.x.shape[1] h_dim = 128 model = nn.Sequential(nn.Linear(in_dim, h_dim), nn.ReLU(), nn.Linear(h_dim, 10)) opt = optim.SGD(model.parameters(), lr=0.35) loss_func = F.cross_entropy cbks = Checkpoints(3) # save checkpoint each 3 epochs learner = Learner(model, opt, loss_func, data, metrics=[accuracy], callbacks=cbks) learner.fit(3) learner.load_checkpoint() # load the latest checkpoint learner.fit(2) # go on training learner.test(test_dl) pred = learner.predict(x_valid) print(pred.size()) learner.recorder.plot_loss() plt.show()
def forward(self, g): # For undirected graphs, in_degree is the same as # out_degree. h = g.in_degrees().view(-1, 1).float() for conv in self.layers: h = conv(g, h) g.ndata['h'] = h hg = dgl.mean_nodes(g, 'h') return self.classify(hg) model = Classifier(1, 256, train_ds.num_classes) optimizer = optim.Adam(model.parameters(), lr=0.001) # 3. learne loss_func = nn.CrossEntropyLoss() learner = Learner(model, optimizer, loss_func, data, metrics=accuracy) # 4. fit learner.fit(80) # 5. test learner.test(test_dl) # 6. predict learner.predict(test_dl) # 7. plot learner.recorder.plot_metrics() plt.show()