def __init__(self, C_in, C_out, kernel_size, stride, padding, group,affine=True,options="D"): super(BinaryGroupConv, self).__init__() self.group = int(C_in/4) self.bn_1 = nn.BatchNorm2d(C_in, affine=affine) self.conv_1 = Layer.Conv2d_1w1a(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=self.group, bias=False) self.shuffle = ShuffleBlock(self.group) self.shortcut = nn.Sequential() if stride != 1: if options == "A": self.shortcut = LambdaLayer(lambda x: F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, cin//4, cin//4), "constant", 0)) elif options == "B": self.shortcut = nn.Sequential( Layer.Conv2d_1w1a(C_in, C_in, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(C_in,affine=affine) ) elif options == "C": self.shortcut = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) else: self.shortcut = nn.Sequential( nn.AvgPool2d(kernel_size=3, stride=2, padding=1), )
def __init__(self, C_in, C_out, affine=True): super(FactorizedReduce, self).__init__() assert C_out % 2 == 0 self.conv_1 = Layer.Conv2d_1w1a(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) self.conv_2 = Layer.Conv2d_1w1a(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine)
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, group, affine=True, options="B"): super(BinaryDilGroupConv, self).__init__() self.conv_1 = Layer.Conv2d_1w1a(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=group, bias=False) self.bn_1 = nn.BatchNorm2d(C_in, affine=affine) self.conv_2 = Layer.Conv2d_1w1a(C_in, C_out, kernel_size=1, padding=0, bias=False) self.bn_2 = nn.BatchNorm2d(C_out, affine=affine) self.shortcut = nn.Sequential() if stride != 1: if options == "A": self.shortcut = LambdaLayer(lambda x: F.pad( x[:, :, ::2, ::2], (0, 0, 0, 0, C_in // 4, C_in // 4), "constant", 0)) elif options == "B": self.shortcut = nn.Sequential( Layer.Conv2d_1w1a(C_in, C_in, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(C_in, affine=affine)) else: self.shortcut = nn.Sequential( nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding), )
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(BinaryConvBN, self).__init__() self.op = nn.Sequential( Layer.Conv2d_1w1a(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False), nn.BatchNorm2d(C_out, affine=affine))
C, C, 3, stride, 1, group=group, affine=affine), 'group_conv_5x5': lambda C, stride, group, affine: BinaryGroupConv( C, C, 5, stride, 2, group=group, affine=affine), 'group_conv_7x7': lambda C, stride, group, affine: BinaryGroupConv( C, C, 7, stride, 3, group=group, affine=affine), 'dil_group_conv_3x3': lambda C, stride, group, affine: BinaryDilGroupConv( C, C, 3, stride, 2, 2, group=group, affine=affine), 'dil_group_conv_5x5': lambda C, stride, group, affine: BinaryDilGroupConv( C, C, 5, stride, 4, 2, group=group, affine=affine), 'group_conv_7x1_1x7': lambda C, stride, group, affine: nn.Sequential( Layer.Conv2d_1w1a( C, C, (1, 7), stride=(1, stride), padding=(0, 3), bias=False), nn.BatchNorm2d(C, affine=affine), Layer.Conv2d_1w1a( C, C, (7, 1), stride=(stride, 1), padding=(3, 0), bias=False), nn.BatchNorm2d(C, affine=affine)), } class LambdaLayer(nn.Module): def __init__(self, lambd): super(LambdaLayer, self).__init__() self.lambd = lambd def forward(self, x): return self.lambd(x)
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, group, affine=True, options="D"): super(Reactblock, self).__init__() norm_layer = nn.BatchNorm2d self.stride = stride self.inplanes = C_in self.planes = C_out self.group = int(C_in // 6) # react sign self.move11 = LearnableBias(C_in) self.binary_3x3 = nn.Conv2d(C_in, C_in, kernel_size=kernel_size, dilation=dilation, stride=stride, padding=padding, groups=self.group, bias=False) self.bn1 = norm_layer(C_in, affine=affine) self.shuffle = ShuffleBlock(self.group) self.shortcut = nn.Sequential() if stride != 1: if options == "A": self.shortcut = LambdaLayer(lambda x: F.pad( x[:, :, ::2, ::2], (0, 0, 0, 0, C_in // 4, C_in // 4), "constant", 0)) elif options == "B": self.shortcut = nn.Sequential( Layer.Conv2d_1w1a(C_in, C_in, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(C_in, affine=affine)) elif options == "C": self.shortcut = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) else: self.shortcut = nn.Sequential( nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) # react prelu self.move12 = LearnableBias(C_in) self.prelu1 = nn.PReLU(C_in) self.move13 = LearnableBias(C_in) # react sign self.move21 = LearnableBias(C_in) self.binary_pw = Layer.Conv2d_1w1a(C_in, C_out, kernel_size=1, stride=1, bias=False) self.bn2 = norm_layer(C_out, affine=affine) self.move22 = LearnableBias(C_out) self.prelu2 = nn.PReLU(C_out) self.move23 = LearnableBias(C_out)