def main(): bi.init("Python", "../../../h2o-py/h2o/estimators", clear_dir=False) modules = [("deeplearning", "H2OAutoEncoderEstimator", "Unsupervised"), ("estimator_base", "H2OEstimator", "Miscellaneous"), ("grid_search", "H2OGridSearch", "Miscellaneous"), ("automl", "H2OAutoML", "Miscellaneous")] builders = filter( lambda b: b[0] != 'coxph', bi.model_builders().items()) # CoxPH is not supported in Python yet for name, mb in builders: module = name if name == "drf": module = "random_forest" if name == "naivebayes": module = "naive_bayes" bi.vprint("Generating model: " + name) bi.write_to_file("%s.py" % module, gen_module(mb, name)) category = "Supervised" if mb["supervised"] else "Unsupervised" if name in {"svd", "word2vec"}: category = "Miscellaneous" modules.append((module, algo_to_classname(name), category)) bi.write_to_file("__init__.py", gen_init(modules)) bi.write_to_file("../../docs/modeling.rst", gen_models_docs(modules)) type_adapter1.vprint_translation_map()
def main(): bi.init("Python", "../../../h2o-py/h2o/estimators", clear_dir=False) modules = [("h2o.estimators.deeplearning", "deeplearning", "H2OAutoEncoderEstimator", "Unsupervised"), ("h2o.estimators.estimator_base", "estimator_base", "H2OEstimator", "Miscellaneous"), ("h2o.grid", "grid", "H2OGridSearch", "Miscellaneous"), ("h2o.automl", "automl", "H2OAutoML", "Miscellaneous")] builders = bi.model_builders().items() algo_to_module = dict(drf="random_forest", naivebayes="naive_bayes", isolationforest="isolation_forest", extendedisolationforest="extended_isolation_forest") algo_to_category = dict(svd="Miscellaneous", word2vec="Miscellaneous") for name, mb in builders: module = name if name in algo_to_module: module = algo_to_module[name] bi.vprint("Generating model: " + name) bi.write_to_file("%s.py" % module, gen_module(mb, name)) category = algo_to_category[name] if name in algo_to_category \ else "Supervised" if mb["supervised"] \ else "Unsupervised" full_module = '.'.join(["h2o.estimators", module]) modules.append( (full_module, module, algo_to_classname(name), category)) bi.write_to_file("__init__.py", gen_init(modules)) bi.write_to_file("../../docs/modeling.rst", gen_models_docs(modules)) type_adapter1.vprint_translation_map()
def main(): bi.init("R", "../../../h2o-r/h2o-package/R", clear_dir=False) for name, mb in bi.model_builders().items(): module = name if name == "drf": module = "random_forest" if name == "naivebayes": module = "naive_bayes" bi.vprint("Generating model: " + name) if name == "deepwater" or name == "deeplearning": print("Generating model:" + module) bi.write_to_file("%s.R" % module, gen_module(mb, name))
def main(): bi.init("Python", "python") for name, mb in bi.model_builders().items(): module = name if name == "drf": module = "random_forest" if name == "naivebayes": module = "naive_bayes" bi.vprint("Generating model: " + name) bi.write_to_file("%s.py" % module, gen_module(mb, name)) type_adapter.vprint_translation_map()
def main(): bi.init("R", "../../../h2o-r/h2o-package/R", clear_dir=False) for name, mb in bi.model_builders().items(): module = name file_name = name if name == "drf": module = "randomForest" file_name = "randomforest" if name == "naivebayes": module = "naiveBayes" if name == "stackedensemble": module = "stackedEnsemble" if name == "pca": module = "prcomp" bi.vprint("Generating model: " + name) bi.write_to_file("%s.R" % file_name, gen_module(mb, name, module))
def main(): bi.init("Python", "../../../h2o-py/h2o/estimators", clear_dir=False) modules = [("deeplearning", "H2OAutoEncoderEstimator")] # deeplearning module contains 2 classes in it... for name, mb in bi.model_builders().items(): module = name if name == "drf": module = "random_forest" if name == "naivebayes": module = "naive_bayes" bi.vprint("Generating model: " + name) bi.write_to_file("%s.py" % module, gen_module(mb, name)) modules.append((module, algo_to_classname(name))) bi.write_to_file("__init__.py", gen_init(modules)) type_adapter.vprint_translation_map()
def main(): bi.init("R", "../../../h2o-r/h2o-package/R", clear_dir=False) for name, mb in bi.model_builders().items(): if name in ["aggregator"]: continue module = name file_name = name if name == "drf": module = "randomForest" file_name = "randomforest" if name == "naivebayes": module = "naiveBayes" if name == "stackedensemble": module = "stackedEnsemble" if name == "pca": module = "prcomp" bi.vprint("Generating model: " + name) bi.write_to_file("%s.R" % file_name, gen_module(mb, name, module))
def main(): bi.init("Python", "../../../h2o-py/h2o/estimators", clear_dir=False) modules = [("deeplearning", "H2OAutoEncoderEstimator", "Unsupervised"), ("estimator_base", "H2OEstimator", "Miscellaneous"), ("grid_search", "H2OGridSearch", "Miscellaneous"), ("automl", "H2OAutoML", "Miscellaneous")] builders = filter(lambda b: b[0] != 'coxph', bi.model_builders().items()) # CoxPH is not supported in Python yet for name, mb in builders: module = name if name == "drf": module = "random_forest" if name == "naivebayes": module = "naive_bayes" bi.vprint("Generating model: " + name) bi.write_to_file("%s.py" % module, gen_module(mb, name)) category = "Supervised" if mb["supervised"] else "Unsupervised" if name in {"svd", "word2vec"}: category = "Miscellaneous" modules.append((module, algo_to_classname(name), category)) bi.write_to_file("__init__.py", gen_init(modules)) bi.write_to_file("../../docs/modeling.rst", gen_models_docs(modules)) type_adapter1.vprint_translation_map()