Example #1
0
def test(network, data, labels):
    activities = torch.zeros(len(data), RUN_TIME, len(SUBJECTS)) # data_size * run_time * classes
    true_labels = torch.from_numpy(np.array(labels))

    for index, image_batch in enumerate(tqdm(data)):
        network_input = encode_image_batch(image_batch)
        network.run(network_input, time=RUN_TIME)
        spikes = network.monitors["OUT"].get("s")
        activities[index, :, :] = spikes[-RUN_TIME:, 0]

    assignments = assign_labels(activities, true_labels, len(SUBJECTS))
    predicated_labels = all_activity(activities, assignments[0], len(SUBJECTS))
    print(classification_report(true_labels, predicated_labels))
Example #2
0
def predict(labeled_batches):
    print(f"predicting {len(labeled_batches)} batches...")

    n_samples = len(labeled_batches)
    n_classes = len(TARGETS)

    true_labels = torch.zeros(n_samples)
    activities = torch.zeros(n_samples, ENCODE_WINDOW, n_classes)

    sample_idx = 0
    for label, img_batch in tqdm(labeled_batches):
        run_sinle_batch(img_batch)
        activities[sample_idx, :, :] = get_result_activity()
        sample_idx += 1

    assignments, _, _ = assign_labels(activities, true_labels, n_classes)
    pred_labels = all_activity(activities, assignments, n_classes)
    return pred_labels
Example #3
0
            update_interval)

        print(
            "\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)"
            % (accuracy["all"][-1], np.mean(
                accuracy["all"]), np.max(accuracy["all"])))
        print(
            "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
            % (
                accuracy["proportion"][-1],
                np.mean(accuracy["proportion"]),
                np.max(accuracy["proportion"]),
            ))

        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, labels, num_classes, rates)

    #Add the current label to the list of labels for this update_interval
    labels[i % update_interval] = label[0]

    # Run the network on the input.
    choice = np.random.choice(int(n_neurons / num_classes),
                              size=n_clamp,
                              replace=False)
    clamp = {"Ae": per_class * label.long() + torch.Tensor(choice).long()}
    inputs = {"X": image.view(time, 480, 480, 3)}
    network.run(inputs=inputs, time=time, clamp=clamp)

    # Get voltage recording.
    exc_voltages = exc_voltage_monitor.get("v")
    inh_voltages = inh_voltage_monitor.get("v")
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=100,
         lr=1e-2,
         lr_decay=1,
         time=350,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = DiehlAndCook2015v2(n_inpt=784,
                                     n_neurons=n_neurons,
                                     inh=inhib,
                                     dt=dt,
                                     norm=78.4,
                                     theta_plus=theta_plus,
                                     theta_decay=theta_decay,
                                     nu=[0, lr])

    else:
        network = load(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons).long()

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 1 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()
        full_spike_record[i] = spikes['Y'].get('s').t().sum(0).long()

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections[('X', 'Y')].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(
                    params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    # Save full spike record to disk.
    torch.save(full_spike_record, os.path.join(spikes_path, f))
        accuracy['proportion'].append(
            100 *
            torch.sum(labels[i - update_interval:i].long() == proportion_pred)
            / update_interval)

        print(
            '\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)'
            % (accuracy['all'][-1], np.mean(
                accuracy['all']), np.max(accuracy['all'])))
        print(
            'Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n'
            % (accuracy['proportion'][-1], np.mean(
                accuracy['proportion']), np.max(accuracy['proportion'])))

        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, labels[i - update_interval:i], 10, rates)

    # Get next input sample.
    sample = next(data_loader)
    inpts = {'X': sample}

    # Run the network on the input.
    choice = np.random.choice(int(n_neurons / 10), size=n_clamp, replace=False)
    clamp = {'Ae': per_class * labels[i].long() + torch.Tensor(choice).long()}
    network.run(inpts=inpts, time=time, clamp=clamp)

    # Get voltage recording.
    exc_voltages = exc_voltage_monitor.get('v')
    inh_voltages = inh_voltage_monitor.get('v')

    # Add to spikes recording.
Example #6
0
                    np.mean(accuracy["all"]),
                    np.max(accuracy["all"]),
                )
            )
            print(
                "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
                % (
                    accuracy["proportion"][-1],
                    np.mean(accuracy["proportion"]),
                    np.max(accuracy["proportion"]),
                )
            )

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, label_tensor[step - update_interval : step], 10, rates
            )

        # Run the network on the input.
        network.run(inpts=inpts, time=time, input_time_dim=1)

        # Get voltage recording.
        exc_voltages = exc_voltage_monitor.get("v")
        inh_voltages = inh_voltage_monitor.get("v")

        # Add to spikes recording.
        spike_record[step % update_interval] = spikes["Ae"].get("s").t()

        # Optionally plot various simulation information.
        if plot:
            inpt = inpts["X"].view(time, 784).sum(0).view(28, 28)
                # Save network to disk.
                path = os.path.join('..', '..', 'params', data, model)
                if not os.path.isdir(path):
                    os.makedirs(path)

                network.save(os.path.join(path, model_name + '.pt'))
                path = os.path.join(
                    path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, current_labels, n_classes, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels,
                                               n_classes, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i]
    sample = bernoulli(datum=image, time=time, dt=dt,
                       max_prob=0.5).unsqueeze(1).unsqueeze(1)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)
Example #8
0
def main(seed=0, n_train=60000, n_test=10000, c_low=1, c_high=25, p_low=0.5, kernel_size=(16,), stride=(2,),
         n_filters=25, crop=4, lr=0.01, lr_decay=1, time=100, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=1,
         norm=0.2, progress_interval=10, update_interval=250, plot=False, train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, c_low, c_high, p_low, time, dt,
        theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length ** 2
    input_shape = [side_length, side_length]
    n_examples = n_train if train else n_test
    n_classes = 10

    if _pair(kernel_size) == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - _pair(kernel_size)[0]) / _pair(stride)[0]) + 1,
                     int((input_shape[1] - _pair(kernel_size)[1]) / _pair(stride)[1]) + 1)

    # Build network.
    if train:
        network = Network()

        input_layer = Input(n=n_inpt, traces=True, trace_tc=5e-2)
        output_layer = DiehlAndCookNodes(
            n=n_filters * conv_size[0] * conv_size[1], traces=True, rest=-65.0, reset=-60.0,
            thresh=-52.0, refrac=5, decay=1e-2, trace_tc=5e-2, theta_plus=theta_plus, theta_decay=theta_decay
        )
        input_output_conn = LocallyConnectedConnection(
            input_layer, output_layer, kernel_size=kernel_size, stride=stride, n_filters=n_filters,
            nu=[0, lr], update_rule=PostPre, wmin=0, wmax=1, norm=norm, input_shape=input_shape
        )

        w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
        for fltr1 in range(n_filters):
            for fltr2 in range(n_filters):
                if fltr1 != fltr2:
                    for j in range(conv_size[0]):
                        for k in range(conv_size[1]):
                            x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                            x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                            w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(output_layer, output_layer, w=w)

        plt.matshow(w)
        plt.colorbar()

        network.add_layer(input_layer, name='X')
        network.add_layer(output_layer, name='Y')
        network.add_connection(input_output_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
        )
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {
        scheme: torch.Tensor().long() for scheme in curves.keys()
    }

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    # Calculate linear increase every update interval.
    if train:
        n_increase = int(p_low * n_examples) / update_interval
        increase = (c_high - c_low) / n_increase
        increases = 0
        inhib = c_low

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

                if increases < n_increase:
                    inhib = inhib + increase

                    print(f'\nIncreasing inhibition to {inhib}.\n')

                    w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
                    for fltr1 in range(n_filters):
                        for fltr2 in range(n_filters):
                            if fltr1 != fltr2:
                                for j in range(conv_size[0]):
                                    for k in range(conv_size[1]):
                                        x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                                        x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                                        w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

                    w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
                    network.connections['Y', 'Y'].w = w

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(
                curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
                proportions=proportions, ngram_scores=ngram_scores, n=2
            )
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print('New best accuracy! Saving network parameters to disk.')

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(spike_record, current_labels, 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record, current_labels, 10, 2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % update_interval].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length ** 2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections[('X', 'Y')].w, n_filters, kernel_size, conv_size, locations, side_length, im=weights_im
            )

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i % len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(
        curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
        proportions=proportions, ngram_scores=ngram_scores, n=2
    )
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']), np.mean(curves['proportion']), np.mean(curves['ngram']),
        np.max(curves['all']), np.max(curves['proportion']), np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,c_low,c_high,p_low,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,c_low,c_high,p_low,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat([labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
Example #9
0
def main(args):
    if args.update_steps is None:
        args.update_steps = max(
            250 // args.batch_size, 1
        )  #Its value is 16 # why is it always multiplied with step? #update_steps is how many batch to classify before updating the graphs

    update_interval = args.update_steps * args.batch_size  # Value is 240 #update_interval is how many pictures to classify before updating the graphs

    # Sets up GPU use
    torch.backends.cudnn.benchmark = False
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(
            args.seed
        )  #to enable reproducability of the code to get the same result
    else:
        torch.manual_seed(args.seed)

    # Determines number of workers to use
    if args.n_workers == -1:
        args.n_workers = args.gpu * 4 * torch.cuda.device_count()

    n_sqrt = int(np.ceil(np.sqrt(args.n_neurons)))

    if args.reduction == "sum":  #could have used switch to improve performance
        reduction = torch.sum  #weight updates for the batch
    elif args.reduction == "mean":
        reduction = torch.mean
    elif args.reduction == "max":
        reduction = max_without_indices
    else:
        raise NotImplementedError

    # Build network.
    network = DiehlAndCook2015v2(  #Changed here
        n_inpt=784,  # input dimensions are 28x28=784
        n_neurons=args.n_neurons,
        inh=args.inh,
        dt=args.dt,
        norm=78.4,
        nu=(1e-4, 1e-2),
        reduction=reduction,
        theta_plus=args.theta_plus,
        inpt_shape=(1, 28, 28),
    )

    # Directs network to GPU
    if args.gpu:
        network.to("cuda")

    # Load MNIST data.
    dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=True,
        transform=transforms.Compose(  #Composes several transforms together
            [
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x * args.intensity)
            ]),
    )

    test_dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=False,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    # Neuron assignments and spike proportions.
    n_classes = 10  #changed
    assignments = -torch.ones(args.n_neurons)  #assignments is set to -1
    proportions = torch.zeros(args.n_neurons,
                              n_classes)  #matrix of 100x10 filled with zeros
    rates = torch.zeros(args.n_neurons,
                        n_classes)  #matrix of 100x10 filled with zeros

    # Set up monitors for spikes and voltages
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(
            network.layers[layer], state_vars=["s"], time=args.time
        )  # Monitors:  Records state variables of interest. obj:An object to record state variables from during network simulation.
        network.add_monitor(
            spikes[layer], name="%s_spikes" % layer
        )  #state_vars: Iterable of strings indicating names of state variables to record.
        #param time: If not ``None``, pre-allocate memory for state variable recording.
    weights_im = None
    spike_ims, spike_axes = None, None

    # Record spikes for length of update interval.
    spike_record = torch.zeros(update_interval, args.time, args.n_neurons)

    if os.path.isdir(
            args.log_dir):  #checks if the path is a existing directory
        shutil.rmtree(
            args.log_dir)  # is used to delete an entire directory tree

    # Summary writer.
    writer = SummaryWriter(
        log_dir=args.log_dir, flush_secs=60
    )  #SummaryWriter: these utilities let you log PyTorch models and metrics into a directory for visualization
    #flush_secs:  in seconds, to flush the pending events and summaries to disk.
    for epoch in range(args.n_epochs):  #default is 1
        print("\nEpoch: {epoch}\n")

        labels = []

        # Create a dataloader to iterate and batch data
        dataloader = DataLoader(  #It represents a Python iterable over a dataset
            dataset,
            batch_size=args.batch_size,  #how many samples per batch to load
            shuffle=
            True,  #set to True to have the data reshuffled at every epoch
            num_workers=args.n_workers,
            pin_memory=args.
            gpu,  #If True, the data loader will copy Tensors into CUDA pinned memory before returning them.
        )

        for step, batch in enumerate(
                dataloader
        ):  #Enumerate() method adds a counter to an iterable and returns it in a form of enumerate object
            print("Step:", step)

            global_step = 60000 * epoch + args.batch_size * step

            if step % args.update_steps == 0 and step > 0:

                # Convert the array of labels into a tensor
                label_tensor = torch.tensor(labels)

                # Get network predictions.
                all_activity_pred = all_activity(spikes=spike_record,
                                                 assignments=assignments,
                                                 n_labels=n_classes)
                proportion_pred = proportion_weighting(
                    spikes=spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/all vote",
                    scalar_value=torch.mean(
                        (label_tensor.long() == all_activity_pred).float()),
                    global_step=global_step,
                )
                #Vennila: Records the accuracies in each step
                value = torch.mean(
                    (label_tensor.long() == all_activity_pred).float())
                value = value.item()
                accuracy.append(value)
                print("ACCURACY:", value)
                writer.add_scalar(
                    tag="accuracy/proportion weighting",
                    scalar_value=torch.mean(
                        (label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="spikes/mean",
                    scalar_value=torch.mean(torch.sum(spike_record, dim=1)),
                    global_step=global_step,
                )

                square_weights = get_square_weights(
                    network.connections["X", "Y"].w.view(784, args.n_neurons),
                    n_sqrt,
                    28,
                )
                img_tensor = colorize(square_weights, cmap="hot_r")

                writer.add_image(
                    tag="weights",
                    img_tensor=img_tensor,
                    global_step=global_step,
                    dataformats="HWC",
                )

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spikes=spike_record,
                    labels=label_tensor,
                    n_labels=n_classes,
                    rates=rates,
                )

                labels = []

            labels.extend(
                batch["label"].tolist()
            )  #for each batch or 16 pictures the labels of it is added to this list

            # Prep next input batch.
            inpts = {"X": batch["encoded_image"]}
            if args.gpu:
                inpts = {
                    k: v.cuda()
                    for k, v in inpts.items()
                }  #.cuda() is used to set up and run CUDA operations in the selected GPU

            # Run the network on the input.
            t0 = time()
            network.run(inputs=inpts, time=args.time, one_step=args.one_step
                        )  # Simulate network for given inputs and time.
            t1 = time() - t0

            # Add to spikes recording.
            s = spikes["Y"].get("s").permute((1, 0, 2))
            spike_record[(step * args.batch_size) %
                         update_interval:(step * args.batch_size %
                                          update_interval) + s.size(0)] = s

            writer.add_scalar(tag="time/simulation",
                              scalar_value=t1,
                              global_step=global_step)
            # if(step==1):
            #     input_exc_weights = network.connections["X", "Y"].w
            #     an_array = input_exc_weights.detach().cpu().clone().numpy()
            #     #print(np.shape(an_array))
            #     data = asarray(an_array)
            #     savetxt('data.csv',data)
            #     print("Beginning weights saved")
            # if(step==3749):
            #     input_exc_weights = network.connections["X", "Y"].w
            #     an_array = input_exc_weights.detach().cpu().clone().numpy()
            #     #print(np.shape(an_array))
            #     data2 = asarray(an_array)
            #     savetxt('data2.csv',data2)
            #     print("Ending weights saved")
            # Plot simulation data.
            if args.plot:
                input_exc_weights = network.connections["X", "Y"].w
                # print("Weights:",input_exc_weights)
                square_weights = get_square_weights(
                    input_exc_weights.view(784, args.n_neurons), n_sqrt, 28)
                spikes_ = {
                    layer: spikes[layer].get("s")[:, 0]
                    for layer in spikes
                }
                spike_ims, spike_axes = plot_spikes(spikes_,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                weights_im = plot_weights(square_weights, im=weights_im)

                plt.pause(1e-8)

            # Reset state variables.
            network.reset_state_variables()
        print(end_accuracy())  #Vennila
Example #10
0
def main(args):
    update_interval = args.update_steps * args.batch_size

    # Sets up GPU use
    torch.backends.cudnn.benchmark = False
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(args.seed)
    else:
        torch.manual_seed(args.seed)

    # Determines number of workers to use
    if args.n_workers == -1:
        args.n_workers = args.gpu * 4 * torch.cuda.device_count()

    n_sqrt = int(np.ceil(np.sqrt(args.n_neurons)))

    if args.reduction == "sum":
        reduction = torch.sum
    elif args.reduction == "mean":
        reduction = torch.mean
    elif args.reduction == "max":
        reduction = max_without_indices
    else:
        raise NotImplementedError

    # Build network.
    network = DiehlAndCook2015v2(
        n_inpt=784,
        n_neurons=args.n_neurons,
        inh=args.inh,
        dt=args.dt,
        norm=78.4,
        nu=(0.0, 1e-2),
        reduction=reduction,
        theta_plus=args.theta_plus,
        inpt_shape=(1, 28, 28),
    )

    # Directs network to GPU.
    if args.gpu:
        network.to("cuda")

    # Load MNIST data.
    dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    dataset, valid_dataset = torch.utils.data.random_split(
        dataset, [59000, 1000])

    test_dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=False,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    # Neuron assignments and spike proportions.
    n_classes = 10
    assignments = -torch.ones(args.n_neurons)
    proportions = torch.zeros(args.n_neurons, n_classes)
    rates = torch.zeros(args.n_neurons, n_classes)

    # Set up monitors for spikes and voltages
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=["s"],
                                time=args.time)
        network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    weights_im = None
    spike_ims, spike_axes = None, None

    # Record spikes for length of update interval.
    spike_record = torch.zeros(update_interval, args.time, args.n_neurons)

    if os.path.isdir(args.log_dir):
        shutil.rmtree(args.log_dir)

    # Summary writer.
    writer = SummaryWriter(log_dir=args.log_dir, flush_secs=60)

    for epoch in range(args.n_epochs):
        print(f"\nEpoch: {epoch}\n")

        labels = []

        # Get training data loader.
        dataloader = DataLoader(
            dataset=dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.n_workers,
            pin_memory=args.gpu,
        )

        for step, batch in enumerate(dataloader):
            print(f"Step: {step} / {len(dataloader)}")

            global_step = 60000 * epoch + args.batch_size * step
            if step % args.update_steps == 0 and step > 0:
                # Disable learning.
                network.train(False)

                # Get test data loader.
                valid_dataloader = DataLoader(
                    dataset=valid_dataset,
                    batch_size=args.test_batch_size,
                    shuffle=True,
                    num_workers=args.n_workers,
                    pin_memory=args.gpu,
                )

                test_labels = []
                test_spike_record = torch.zeros(len(valid_dataset), args.time,
                                                args.n_neurons)
                t0 = time()
                for test_step, test_batch in enumerate(valid_dataloader):
                    # Prep next input batch.
                    inpts = {"X": test_batch["encoded_image"]}
                    if args.gpu:
                        inpts = {k: v.cuda() for k, v in inpts.items()}

                    # Run the network on the input (inference mode).
                    network.run(inpts=inpts,
                                time=args.time,
                                one_step=args.one_step)

                    # Add to spikes recording.
                    s = spikes["Y"].get("s").permute((1, 0, 2))
                    test_spike_record[(test_step * args.test_batch_size
                                       ):(test_step * args.test_batch_size) +
                                      s.size(0)] = s

                    # Plot simulation data.
                    if args.valid_plot:
                        input_exc_weights = network.connections["X", "Y"].w
                        square_weights = get_square_weights(
                            input_exc_weights.view(784, args.n_neurons),
                            n_sqrt, 28)
                        spikes_ = {
                            layer: spikes[layer].get("s")[:, 0]
                            for layer in spikes
                        }
                        spike_ims, spike_axes = plot_spikes(spikes_,
                                                            ims=spike_ims,
                                                            axes=spike_axes)
                        weights_im = plot_weights(square_weights,
                                                  im=weights_im)

                        plt.pause(1e-8)

                    # Reset state variables.
                    network.reset_()

                    test_labels.extend(test_batch["label"].tolist())

                t1 = time() - t0

                writer.add_scalar(tag="time/test",
                                  scalar_value=t1,
                                  global_step=global_step)

                # Convert the list of labels into a tensor.
                test_label_tensor = torch.tensor(test_labels)

                # Get network predictions.
                all_activity_pred = all_activity(
                    spikes=test_spike_record,
                    assignments=assignments,
                    n_labels=n_classes,
                )
                proportion_pred = proportion_weighting(
                    spikes=test_spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/valid/all vote",
                    scalar_value=100 * torch.mean(
                        (test_label_tensor.long()
                         == all_activity_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="accuracy/valid/proportion weighting",
                    scalar_value=100 * torch.mean(
                        (test_label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )

                square_weights = get_square_weights(
                    network.connections["X", "Y"].w.view(784, args.n_neurons),
                    n_sqrt,
                    28,
                )
                img_tensor = colorize(square_weights, cmap="hot_r")

                writer.add_image(
                    tag="weights",
                    img_tensor=img_tensor,
                    global_step=global_step,
                    dataformats="HWC",
                )

                # Convert the array of labels into a tensor
                label_tensor = torch.tensor(labels)

                # Get network predictions.
                all_activity_pred = all_activity(spikes=spike_record,
                                                 assignments=assignments,
                                                 n_labels=n_classes)
                proportion_pred = proportion_weighting(
                    spikes=spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/train/all vote",
                    scalar_value=100 * torch.mean(
                        (label_tensor.long() == all_activity_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="accuracy/train/proportion weighting",
                    scalar_value=100 * torch.mean(
                        (label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spikes=spike_record,
                    labels=label_tensor,
                    n_labels=n_classes,
                    rates=rates,
                )

                # Re-enable learning.
                network.train(True)

                labels = []

            labels.extend(batch["label"].tolist())

            # Prep next input batch.
            inpts = {"X": batch["encoded_image"]}
            if args.gpu:
                inpts = {k: v.cuda() for k, v in inpts.items()}

            # Run the network on the input (training mode).
            t0 = time()
            network.run(inpts=inpts, time=args.time, one_step=args.one_step)
            t1 = time() - t0

            writer.add_scalar(tag="time/train/step",
                              scalar_value=t1,
                              global_step=global_step)

            # Add to spikes recording.
            s = spikes["Y"].get("s").permute((1, 0, 2))
            spike_record[(step * args.batch_size) %
                         update_interval:(step * args.batch_size %
                                          update_interval) + s.size(0)] = s

            # Plot simulation data.
            if args.plot:
                input_exc_weights = network.connections["X", "Y"].w
                square_weights = get_square_weights(
                    input_exc_weights.view(784, args.n_neurons), n_sqrt, 28)
                spikes_ = {
                    layer: spikes[layer].get("s")[:, 0]
                    for layer in spikes
                }
                spike_ims, spike_axes = plot_spikes(spikes_,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                weights_im = plot_weights(square_weights, im=weights_im)

                plt.pause(1e-8)

            # Reset state variables.
            network.reset_()
Example #11
0
    def train(self, config=None):
        if config is None:
            cfg = self.cfg

        update_interval = cfg['update_interval']
        time = cfg['time']
        n_neurons = cfg['network']['n_neurons']
        dataset, n_classes = self._init_dataset(cfg)

        # Record spikes during the simulation
        spike_record = torch.zeros(update_interval, time, n_neurons)

        # Neuron assignments and spike proportions
        assignments = -torch.ones(n_neurons)
        proportions = torch.zeros(n_neurons, n_classes)
        rates = torch.zeros(n_neurons, n_classes)

        # Sequence of accuracy estimates
        accuracy = {"all": [], "proportion": []}

        # Set up monitors for spikes and voltages
        exc_voltage_monitor, inh_voltage_monitor, spikes, voltages = self._init_network_monitor(
            self.network, cfg)

        inpt_ims, inpt_axes = None, None
        spike_ims, spike_axes = None, None
        weights_im = None
        assigns_im = None
        perf_ax = None
        voltage_axes, voltage_ims = None, None

        print("\nBegin training.\n")
        iteration = 0
        for epoch in range(cfg['epochs']):
            print("Progress: %d / %d" % (epoch, cfg['epochs']))
            labels = []
            start_time = T.time()

            dataloader = DataLoader(dataset,
                                    batch_size=1,
                                    shuffle=True,
                                    num_workers=cfg['n_workers'])

            for step, batch in enumerate(tqdm(dataloader)):
                # Get next input sample.
                inputs = {'X': batch["encoded_image"].view(time, 1, 1, 28, 28)}
                inputs = {k: v.to(self.device) for k, v in inputs.items()}

                if step % update_interval == 0 and step > 0:
                    # Convert the array of labels into a tensor
                    label_tensor = torch.tensor(labels)

                    # Get network predictions.
                    all_activity_pred = all_activity(spikes=spike_record,
                                                     assignments=assignments,
                                                     n_labels=n_classes)
                    proportion_pred = proportion_weighting(
                        spikes=spike_record,
                        assignments=assignments,
                        proportions=proportions,
                        n_labels=n_classes,
                    )

                    # Compute network accuracy according to available classification strategies.
                    accuracy["all"].append(100 * torch.sum(
                        label_tensor.long() == all_activity_pred).item() /
                                           len(label_tensor))
                    accuracy["proportion"].append(100 * torch.sum(
                        label_tensor.long() == proportion_pred).item() /
                                                  len(label_tensor))

                    iteration += len(label_tensor)

                    print(
                        "\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)"
                        % (
                            accuracy["all"][-1],
                            np.mean(accuracy["all"]),
                            np.max(accuracy["all"]),
                        ))
                    print(
                        "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
                        % (
                            accuracy["proportion"][-1],
                            np.mean(accuracy["proportion"]),
                            np.max(accuracy["proportion"]),
                        ))

                    self.recorder.insert(
                        (iteration, accuracy["all"][-1],
                         np.mean(accuracy["all"]), np.max(accuracy["all"]),
                         accuracy["proportion"][-1],
                         np.mean(accuracy["proportion"]),
                         np.max(accuracy["proportion"])))

                    assignments, proportions, rates = assign_labels(
                        spikes=spike_record,
                        labels=label_tensor,
                        n_labels=n_classes,
                        rates=rates,
                    )

                    labels = []

                labels.append(batch["label"])

                # Run the network on the input.
                self.network.run(inputs=inputs, time=time, input_time_dim=1)

                # Get voltage recording.
                exc_voltages = exc_voltage_monitor.get("v")
                inh_voltages = inh_voltage_monitor.get("v")

                # Add to spikes recording.
                spike_record[step % update_interval] = spikes["Ae"].get(
                    "s").squeeze()

                # Reset state variables
                self.network.reset_state_variables()

                if step % 1000 == 0:
                    self.save(cfg=cfg)

            print("Progress: %d / %d (%.4f seconds)" %
                  (epoch + 1, cfg['epochs'], T.time() - start_time))

        self.recorder.write(self.save_dir, cfg['name'])
        print("Training complete.\n")
        return None
Example #12
0
def main(seed=0, n_train=60000, n_test=10000, kernel_size=(8,), kernel_size2=(4,), stride=(4,), stride2=(2,),
         n_filters=25, n_filters2=25, padding=0, inhib=100, time=100, lr=1e-3, lr_decay=0.99, dt=1, intensity=1,
         progress_interval=10, update_interval=250, plot=False, train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_train, kernel_size, kernel_size2, stride, stride2, n_filters, n_filters2,
        padding, inhib, time, lr, lr_decay, dt, intensity, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_train, n_test, kernel_size, kernel_size2, stride, stride2,
            n_filters, n_filters2, padding, inhib, time, lr, lr_decay, dt, intensity, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    input_shape = [28, 28]

    if kernel_size == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (
            int((input_shape[0] - kernel_size[0]) / stride[0]) + 1,
            int((input_shape[1] - kernel_size[1]) / stride[1]) + 1
        )

    if kernel_size2 == conv_size:
        conv_size2 = [1, 1]
    else:
        conv_size2 = (
            int((conv_size[0] - kernel_size2[0]) / stride2[0]) + 1,
            int((conv_size[1] - kernel_size2[1]) / stride2[1]) + 1
        )

    n_classes = 10
    total_kernel_size = int(np.prod(kernel_size))
    total_conv_size = int(np.prod(conv_size))
    n_neurons = n_filters * total_conv_size
    total_kernel_size2 = int(np.prod(kernel_size2))
    total_conv_size2 = int(np.prod(conv_size2))
    n_neurons2 = n_filters2 * total_conv_size2

    # Build network.
    if train:
        network = Network()
        input_layer = Input(n=784, shape=(1, 1, 28, 28), traces=True)
        conv_layer = DiehlAndCookNodes(
            n=n_neurons, shape=(1, n_filters, *conv_size), thresh=-64.0,
            traces=True, theta_plus=0.05, refrac=0
        )
        conv_layer_prime = LIFNodes(
            n=n_neurons, shape=(1, n_filters, *conv_size), refrac=0, traces=True
        )
        conv_conn = Conv2dConnection(
            input_layer, conv_layer, kernel_size=kernel_size, stride=stride, update_rule=PostPre,
            norm=0.5 * int(np.sqrt(total_kernel_size)), nu=[0, lr], wmax=2.0
        )
        conv_conn_prime = Conv2dConnection(
            input_layer, conv_layer_prime, w=conv_conn.w,
            kernel_size=kernel_size, stride=stride, nu=[0, 0], wmax=2.0
        )

        w = torch.zeros(
            n_filters, conv_size[0], conv_size[1], n_filters, conv_size[0], conv_size[1]
        )
        for f1 in range(n_filters):
            for f2 in range(n_filters):
                if f1 != f2:
                    for i in range(conv_size[0]):
                        for j in range(conv_size[1]):
                            w[f1, i, j, f2, i, j] = -inhib

        w = w.view(n_neurons, n_neurons)
        recurrent_conn = Connection(conv_layer, conv_layer, w=w)

        conv_layer2 = DiehlAndCookNodes(
            n=n_neurons2, shape=(1, n_filters2, *conv_size2),
            thresh=-64.0, traces=True, theta_plus=0.05, refrac=0
        )
        conv_layer2_prime = LIFNodes(
            n=n_neurons2, shape=(1, n_filters2, *conv_size2), refrac=0
        )
        conv_conn2 = Conv2dConnection(
            conv_layer_prime, conv_layer2, kernel_size=kernel_size2, stride=stride2, update_rule=PostPre,
            norm=0.25 * int(np.sqrt(total_kernel_size2)), nu=[0, 10 * lr], wmax=2.0
        )
        conv_conn2_prime = Conv2dConnection(
            conv_layer_prime, conv_layer2_prime, w=conv_conn2.w,
            kernel_size=kernel_size2, stride=stride2, nu=[0, 0], wmax=2.0
        )

        w = torch.zeros(
            n_filters2, conv_size2[0], conv_size2[1], n_filters2, conv_size2[0], conv_size2[1]
        )
        for f1 in range(n_filters2):
            for f2 in range(n_filters2):
                if f1 != f2:
                    for i in range(conv_size2[0]):
                        for j in range(conv_size2[1]):
                            w[f1, i, j, f2, i, j] = -inhib

        w = w.view(n_neurons2, n_neurons2)
        recurrent_conn2 = Connection(conv_layer2, conv_layer2, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(conv_layer, name='Y')
        network.add_layer(conv_layer_prime, name='Y_')
        network.add_layer(conv_layer2, name='Z')
        network.add_layer(conv_layer2_prime, name='Z_')

        network.add_connection(conv_conn, source='X', target='Y')
        network.add_connection(conv_conn_prime, source='X', target='Y_')
        network.add_connection(recurrent_conn, source='Y', target='Y')
        network.add_connection(conv_conn2, source='Y_', target='Z')
        network.add_connection(conv_conn2_prime, source='Y_', target='Z_')
        network.add_connection(recurrent_conn2, source='Z', target='Z')

        # Voltage recording for excitatory and inhibitory layers.
        voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
        network.add_monitor(voltage_monitor, name='output_voltage')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))

        for connection in network.connections.values():
            connection.update_rule = NoOp(connection, connection.nu)
            connection.theta_decay = 0
            connection.theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons2)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons2))
        proportions = torch.zeros_like(torch.Tensor(n_neurons2, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons2, n_classes))
        logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs')
        logreg_model.coef_ = np.zeros([n_classes, n_neurons2])
        logreg_model.intercept_ = np.zeros(n_classes)
        logreg_model.classes_ = np.arange(n_classes)
    else:
        path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, logreg_coef, logreg_intercept = torch.load(open(path, 'rb'))
        logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs')
        logreg_model.coef_ = logreg_coef
        logreg_model.intercept_ = logreg_intercept
        logreg_model.classes_ = np.arange(n_classes)

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'logreg': []}
    predictions = {
        scheme: torch.Tensor().long() for scheme in curves.keys()
    }

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_ims = None
    inpt_axes = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    weights_im2 = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print('Progress: %d / %d (%.4f seconds)' % (i, n_examples, t() - start))
            start = t()

        if i % update_interval == 0 and i > 0:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay
            network.connections['Y_', 'Z'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(
                curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
                proportions=proportions, logreg=logreg_model
            )
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print('New best accuracy! Saving network parameters to disk.')

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save(
                        (
                            assignments, proportions, rates, logreg_model.coef_, logreg_model.intercept_
                        ), open(path, 'wb')
                    )
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(spike_record, current_labels, n_classes, rates)

                # Refit logistic regression model.
                logreg_model = logreg_fit(spike_record, current_labels, logreg_model)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = bernoulli(datum=image, time=time, dt=dt, max_prob=0.5).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Z_'].get('s').sum() < 5 and retries < 3:
            retries += 1
            sample = bernoulli(datum=image, time=time, dt=dt, max_prob=0.5 + retries * 0.15).unsqueeze(1).unsqueeze(1)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Z_'].get('s').view(time, -1)

        # Optionally plot various simulation information.
        if plot:
            _input = inpts['X'].view(time, 784).sum(0).view(28, 28)
            w = network.connections['X', 'Y'].w
            w2 = network.connections['Y_', 'Z'].w
            _spikes = {
                'X': spikes['X'].get('s').view(28 ** 2, time),
                'Y': spikes['Y'].get('s').view(n_neurons, time),
                'Y_': spikes['Y_'].get('s').view(n_neurons, time),
                'Z': spikes['Z'].get('s').view(n_neurons2, time),
                'Z_': spikes['Z_'].get('s').view(n_neurons2, time)
            }

            inpt_axes, inpt_ims = plot_input(
                image.view(28, 28), _input, label=labels[i], ims=inpt_ims, axes=inpt_axes
            )
            spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_conv2d_weights(w, im=weights_im, wmax=0.2)
            weights_im2 = plot_conv2d_weights(w2, im=weights_im2, wmax=0.2)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i % len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(
        curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
        proportions=proportions, logreg=logreg_model
    )
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save(
                (
                    assignments, proportions, rates, logreg_model.coef_, logreg_model.intercept_
                ), open(path, 'wb')
            )

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']), np.mean(curves['proportion']), np.mean(curves['logreg']),
        np.max(curves['all']), np.max(curves['proportion']), np.max(curves['logreg'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                columns = [
                    'seed', 'n_train', 'kernel_size', 'stride', 'n_filters', 'n_filters2', 'padding', 'inhib', 'time',
                    'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_all_activity',
                    'mean_proportion_weighting', 'mean_logreg', 'max_all_activity', 'max_proportion_weighting',
                    'max_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)
            else:
                columns = [
                    'seed', 'n_train', 'n_test', 'kernel_size', 'stride', 'n_filters', 'n_filters2', 'padding',
                    'inhib', 'time', 'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_all_activity',
                    'mean_proportion_weighting', 'mean_logreg', 'max_all_activity', 'max_proportion_weighting',
                    'max_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat([labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
Example #13
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         c_low=2.5,
         c_high=250,
         p_low=0.1,
         time=250,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0,\
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, c_low, c_high, p_low, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_neurons, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, progress_interval,
            update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    if train:
        iter_increase = int(n_train * p_low)
        print(f'Iteration to increase from c_low to c_high: {iter_increase}\n')

    # Build network.
    if train:
        network = Network(dt=dt)
        input_layer = Input(n=784, traces=True)
        exc_layer = DiehlAndCookNodes(n=n_neurons, traces=True)

        w = torch.rand(input_layer.n, exc_layer.n)
        input_exc_conn = Connection(input_layer,
                                    exc_layer,
                                    w=w,
                                    update_rule=PostPre,
                                    norm=78.4,
                                    nu=(1e-4, 1e-2),
                                    wmax=1.0)

        w = torch.zeros(exc_layer.n, exc_layer.n)
        for k1 in range(n_neurons):
            for k2 in range(n_neurons):
                if k1 != k2:
                    x1, y1 = k1 // np.sqrt(n_neurons), k1 % np.sqrt(n_neurons)
                    x2, y2 = k2 // np.sqrt(n_neurons), k2 % np.sqrt(n_neurons)

                    w[k1, k2] = max(
                        -c_high,
                        -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        recurrent_conn = Connection(exc_layer, exc_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(exc_layer, name='Y')
        network.add_connection(input_exc_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, int(time / dt), n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers) - {'X'}:
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=int(time / dt))
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if train and i == iter_increase:
            print(
                '\nChanging inhibition from low and graded to high and constant.\n'
            )
            w = -c_high * (torch.ones(n_neurons, n_neurons) -
                           torch.diag(torch.ones(n_neurons)))
            network.connections['Y', 'Y'].w = w

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, labels[i - update_interval:i], 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(
                    spike_record, labels[i - update_interval:i], 10, 2,
                    ngram_scores)

            print()

        # Get next input sample.
        image = images[i]
        sample = poisson(datum=image, time=int(time / dt))
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=int(time / dt))
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            inpt = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(images[i].view(28, 28), inpt, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print(f'\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,excite,inhib,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,excite,inhib,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    print()
def main(seed=0,
         n_train=60000,
         n_test=10000,
         inhib=250,
         kernel_size=(16, ),
         stride=(2, ),
         time=50,
         n_filters=25,
         crop=0,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         norm=0.2,
         progress_interval=10,
         update_interval=250,
         train=True,
         relabel=False,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0 or relabel, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
        inhib, time, dt, theta_plus, theta_decay, norm, progress_interval,
        update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
            n_test, inhib, time, dt, theta_plus, theta_decay, norm,
            progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length**2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = LocallyConnectedNetwork(
            n_inpt=n_inpt,
            input_shape=[side_length, side_length],
            kernel_size=kernel_size,
            stride=stride,
            n_filters=n_filters,
            inh=inhib,
            dt=dt,
            nu=[.1 * lr, lr],
            theta_plus=theta_plus,
            theta_decay=theta_decay,
            wmin=0,
            wmax=1.0,
            norm=norm)
        network.layers['Y'].thresh = 1
        network.layers['Y'].reset = 0
        network.layers['Y'].rest = 0

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    if crop != 0:
        images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    if not train:
        update_interval = n_examples

    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length**2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections['X', 'Y'].w,
                n_filters,
                kernel_size,
                conv_size,
                locations,
                side_length,
                im=weights_im,
                wmin=0,
                wmax=1)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    if not train and relabel:
        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, current_labels, n_classes, rates)

        # Compute ngram scores.
        ngram_scores = update_ngram_scores(spike_record, current_labels,
                                           n_classes, 2, ngram_scores)

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,inhib,time,lr,lr_decay,timestep,theta_plus,'
                    'theta_decay,norm,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,n_test,inhib,time,lr,lr_decay,timestep,'
                    'theta_plus,theta_decay,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
Example #15
0
            update_interval)

        print(
            "\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)"
            % (accuracy["all"][-1], np.mean(
                accuracy["all"]), np.max(accuracy["all"])))
        print(
            "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
            % (
                accuracy["proportion"][-1],
                np.mean(accuracy["proportion"]),
                np.max(accuracy["proportion"]),
            ))

        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, labels, num_classes, rates)

    #Add the current label to the list of labels for this update_interval
    labels[i % update_interval] = label[0]

    # Run the network on the input.
    choice = np.random.choice(int(n_neurons / num_classes),
                              size=n_clamp,
                              replace=False)
    clamp = {"Ae": per_class * label.long() + torch.Tensor(choice).long()}
    inputs = {"X": image.view(time, 1, 32, 32, 3)}
    network.run(inputs=inputs, time=time, clamp=clamp)

    # Get voltage recording.
    exc_voltages = exc_voltage_monitor.get("v")
    inh_voltages = inh_voltage_monitor.get("v")
Example #16
0
                    accuracy["all"][-1],
                    np.mean(accuracy["all"]),
                    np.max(accuracy["all"]),
                ))
            print(
                "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
                % (
                    accuracy["proportion"][-1],
                    np.mean(accuracy["proportion"]),
                    np.max(accuracy["proportion"]),
                ))

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spikes=spike_record,
                labels=label_tensor,
                n_labels=n_classes,
                rates=rates,
            )

            labels = []

        labels.extend(batch["label"].tolist())

        # Run the network on the input.
        network.run(inputs=inputs, time=time, input_time_dim=1)

        # Add to spikes recording.
        s = spikes["Ae"].get("s").permute((1, 0, 2))
        spike_record[(step * batch_size) %
                     update_interval:(step * batch_size % update_interval) +
                     s.size(0)] = s
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=250,
         time=50,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, time, lr, lr_decay, theta_plus,
        theta_decay, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, time, lr, lr_decay,
        theta_plus, theta_decay, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    if train:
        n_examples = n_train
    else:
        n_examples = n_test

    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)

        input_layer = Input(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=1,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(784, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=PostPre,
                                      nu=[0, lr],
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4)
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) -
                      torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(source=network.layers['Y'],
                                          target=network.layers['Y'],
                                          w=w,
                                          wmin=-inhib,
                                          wmax=0)
        network.add_connection(recurrent_connection, source='Y', target='Y')

    else:
        path = os.path.join('..', '..', 'params', data, model)
        network = load_network(os.path.join(path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=os.path.join('..', '..', 'data',
                                             'FashionMNIST'),
                           download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images = images / 255

    # if train:
    #     for i in range(n_neurons):
    #         network.connections['X', 'Y'].w[:, i] = images[i] + images[i].mean() * torch.randn(784)

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join('..', '..', 'params', data, model)
        path = os.path.join(path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}

    if train:
        best_accuracy = 0

    spikes = {}

    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, predictions = update_curves(curves,
                                                current_labels,
                                                n_classes,
                                                spike_record=spike_record,
                                                assignments=assignments,
                                                proportions=proportions,
                                                ngram_scores=ngram_scores,
                                                n=2)
            print_results(curves)

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    path = os.path.join('..', '..', 'params', data, model)
                    if not os.path.isdir(path):
                        os.makedirs(path)

                    network.save(os.path.join(path, model_name + '.pt'))
                    path = os.path.join(
                        path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % n_examples]
        sample = rank_order(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = rank_order(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _input = images[i % n_examples].view(28, 28)
            reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im, wmax=0.25)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, predictions = update_curves(curves,
                                        current_labels,
                                        n_classes,
                                        spike_record=spike_record,
                                        assignments=assignments,
                                        proportions=proportions,
                                        ngram_scores=ngram_scores,
                                        n=2)
    print_results(curves)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                path = os.path.join('..', '..', 'params', data, model)
                if not os.path.isdir(path):
                    os.makedirs(path)

                network.save(os.path.join(path, model_name + '.pt'))
                path = os.path.join(
                    path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    path = os.path.join('..', '..', 'curves', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    if train:
        to_write = ['train'] + params
    else:
        to_write = ['test'] + params

    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'

    torch.save((curves, update_interval, n_examples),
               open(os.path.join(path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    if train:
        to_write = params + results
    else:
        to_write = test_params + results

    to_write = [str(x) for x in to_write]

    if train:
        name = 'train.csv'
    else:
        name = 'test.csv'

    if not os.path.isfile(os.path.join(path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')
Example #18
0
            update_interval)

        print(
            "\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)"
            % (accuracy["all"][-1], np.mean(
                accuracy["all"]), np.max(accuracy["all"])))
        print(
            "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n"
            % (
                accuracy["proportion"][-1],
                np.mean(accuracy["proportion"]),
                np.max(accuracy["proportion"]),
            ))

        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, label, 10, rates)

    # Run the network on the input.
    choice = np.random.choice(int(n_neurons / 10), size=n_clamp, replace=False)
    clamp = {"Ae": per_class * label.long() + torch.Tensor(choice).long()}
    inpts = {"X": image.view(time, 1, 28, 28)}
    network.run(inpts=inpts, time=time, clamp=clamp)

    # Get voltage recording.
    exc_voltages = exc_voltage_monitor.get("v")
    inh_voltages = inh_voltage_monitor.get("v")

    # Add to spikes recording.
    spike_record[i % update_interval] = spikes["Ae"].get("s").view(
        50, n_neurons)
Example #19
0
def main():
    seed = 0  #random seed
    n_neurons = 100  # number of neurons per layer
    n_train = 60000  # number of traning examples to go through
    n_epochs = 1
    inh = 120.0  # strength of synapses from inh. layer to exci. layer
    exc = 22.5
    lr = 1e-2  # learning rate
    lr_decay = 0.99  # learning rate decay
    time = 350  # duration of each sample after running through possion encoder
    dt = 1  # timestep
    theta_plus = 0.05  # post spike threshold increase
    tc_theta_decay = 1e7  # threshold decay
    intensity = 0.25  # number to multiply input Diehl Cook maja 0.25
    progress_interval = 10
    update_interval = 250
    plot = False
    gpu = False
    load_network = False  # load network from disk
    n_classes = 10
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    # TRAINING
    save_weights_fn = "plots_snn/weights/weights_train.png"
    save_performance_fn = "plots_snn/performance/performance_train.png"
    save_assaiments_fn = "plots_snn/assaiments/assaiments_train.png"
    directorys = [
        "plots_snn", "plots_snn/weights", "plots_snn/performance",
        "plots_snn/assaiments"
    ]
    for directory in directorys:
        if not os.path.exists(directory):
            os.makedirs(directory)
    assert n_train % update_interval == 0
    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    # Build network
    if load_network:
        network = load('net_output.pt')  # here goes file with network to load
    else:
        network = DiehlAndCook2015(
            n_inpt=784,
            n_neurons=n_neurons,
            exc=exc,
            inh=inh,
            dt=dt,
            norm=78.4,
            nu=(1e-4, lr),
            theta_plus=theta_plus,
            inpt_shape=(1, 28, 28),
        )
    if gpu:
        network.to("cuda")
    # Pull dataset
    data, targets = torch.load(
        'data/MNIST/TorchvisionDatasetWrapper/processed/training.pt')
    data = data * intensity
    trainset = torch.utils.data.TensorDataset(data, targets)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=1)

    # Spike recording
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_train, n_neurons).long()

    # Intialization
    if load_network:
        assignments, proportions, rates, ngram_scores = torch.load(
            'parameter_output.pt')
    else:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}
    best_accuracy = 0

    # Initilize spike records
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)
    i = 0
    current_labels = torch.zeros(update_interval)
    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None
    # train
    train_time = t.time()

    current_labels = torch.zeros(update_interval)
    time1 = t.time()
    for j in range(n_epochs):
        i = 0
        for sample, label in trainloader:
            if i >= n_train:
                break
            if i % progress_interval == 0:
                print(f'Progress: {i} / {n_train} took {(t.time()-time1)} s')
                time1 = t.time()
            if i % update_interval == 0 and i > 0:
                #network.connections['X','Y'].update_rule.nu[1] *= lr_decay
                curves, preds = update_curves(curves,
                                              current_labels,
                                              n_classes,
                                              spike_record=spike_record,
                                              assignments=assignments,
                                              proportions=proportions,
                                              ngram_scores=ngram_scores,
                                              n=2)
                print_results(curves)
                for scheme in preds:
                    predictions[scheme] = torch.cat(
                        [predictions[scheme], preds[scheme]], -1)
                # Accuracy curves
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network and parameters to disk.
                    network.save(os.path.join('net_output.pt'))
                    path = "parameters_output.pt"
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)
            sample_enc = poisson(datum=sample, time=time, dt=dt)
            inpts = {'X': sample_enc}
            # Run the network on the input.
            network.run(inputs=inpts, time=time)
            retries = 0
            # Spikes reocrding
            spike_record[i % update_interval] = spikes['Ae'].get('s').view(
                time, n_neurons)
            full_spike_record[i] = spikes['Ae'].get('s').view(
                time, n_neurons).sum(0).long()
            if plot:
                _input = sample.view(28, 28)
                reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
                _spikes = {layer: spikes[layer].get('s') for layer in spikes}
                input_exc_weights = network.connections[('X', 'Ae')].w
                square_assignments = get_square_assignments(
                    assignments, n_sqrt)

                assigns_im = plot_assignments(square_assignments,
                                              im=assigns_im)
                if i % update_interval == 0:
                    square_weights = get_square_weights(
                        input_exc_weights.view(784, n_neurons), n_sqrt, 28)
                    weights_im = plot_weights(square_weights, im=weights_im)
                    [weights_im,
                     save_weights_fn] = plot_weights(square_weights,
                                                     im=weights_im,
                                                     save=save_weights_fn)
                inpt_axes, inpt_ims = plot_input(_input,
                                                 reconstruction,
                                                 label=label,
                                                 axes=inpt_axes,
                                                 ims=inpt_ims)
                spike_ims, spike_axes = plot_spikes(_spikes,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                assigns_im = plot_assignments(square_assignments,
                                              im=assigns_im,
                                              save=save_assaiments_fn)
                perf_ax = plot_performance(curves,
                                           ax=perf_ax,
                                           save=save_performance_fn)
                plt.pause(1e-8)
            current_labels[i % update_interval] = label[0]
            network.reset_state_variables()
            if i % 10 == 0 and i > 0:
                preds = all_activity(
                    spike_record[i % update_interval - 10:i % update_interval],
                    assignments, n_classes)
                print(f'Predictions: {(preds * 1.0).numpy()}')
                print(
                    f'True value:  {current_labels[i % update_interval - 10:i % update_interval].numpy()}'
                )
            i += 1

        print(f'Number of epochs {j}/{n_epochs+1}')
        torch.save(network.state_dict(), 'net_final.pt')
        path = "parameters_final.pt"
        torch.save((assignments, proportions, rates, ngram_scores),
                   open(path, 'wb'))
    print("Training completed. Training took " +
          str((t.time() - train_time) / 6) + " min.")
    print("Saving network...")
    network.save(os.path.join('net_final.pt'))
    torch.save((assignments, proportions, rates, ngram_scores),
               open('parameters_final.pt', 'wb'))
    print("Network saved.")